Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 070303    DOI: 10.1088/1674-1056/abe1a9
GENERAL Prev   Next  

Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions

Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  We study steered coherence (SC) and entanglement in a three-spin Heisenberg XX model under twisted boundary conditions and show that their strengths can be significantly enhanced by tuning the twist angle. The optimal twist angle θopt for achieving the maximum l1 norm of SC is π in the region of weak field B and decreases gradually from π to 0 when B increases after a critical value, while for the relative entropy of SC, θopt equals π in the weak field region and 0 otherwise. The entanglement and the critical temperature above which the entanglement vanishes can also be significantly enhanced by tuning the twist angle from 0 to π.
Keywords:  quantum coherence      entanglement      twisted boundary conditions  
Received:  31 October 2020      Revised:  08 January 2021      Accepted manuscript online:  01 February 2021
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  64.70.Tg (Quantum phase transitions)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675129).
Corresponding Authors:  Yu-Xia Xie     E-mail:  yuxia1124@163.com

Cite this article: 

Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞) Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions 2021 Chin. Phys. B 30 070303

[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Modi K, Brodutch A, Cable H, Paterek Z and Vedral V 2012 Rev. Mod. Phys. 84 1655
[5] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401
[6] Hu M L and Fan H 2012 Ann. Phys. 327 2343
[7] Hu M L and Fan H 2015 New J. Phys. 17 033004
[8] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1
[9] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[10] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[11] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[12] Bu K, Anand N and Singh U 2018 Phys. Rev. A 97 032342
[13] Yu C S 2017 Phys. Rev. A 95 042337
[14] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[15] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[16] Qi X, Gao T and Yan F 2017 J. Phys. A 50 285301
[17] Xi Z J and Yuwen S S 2019 Phys. Rev. A 99 022340
[18] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[19] Zhang Y J, Han W, Xia Y J, Yu Y M and Fan H 2015 Sci. Rep. 5 13359
[20] Hu M L and Fan H 2015 Phys. Rev. A 91 052311
[21] Liu X B, Tian Z H, Wang J C and Jing J L 2016 Ann. Phys. 366 102
[22] Guarnieri G, Kolář M and Filip R 2018 Phys. Rev. Lett. 121 070401
[23] Mukhopadhyay C 2018 Phys. Rev. A 98 012102
[24] Hu M and Zhou W 2019 Laser Phys. Lett. 16 045201
[25] Hu M L and Fan H 2020 Sci. Chin.-Phys. Mech. Astron. 63 230322
[26] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[27] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
[28] Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402
[29] Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602
[30] Yao Y, Dong G H, Ge L, Li M and Sun C P 2016 Phys. Rev. A 94 062339
[31] Yu C S, Yang S R and Guo B Q 2016 Quantum Inf. Process. 15 3773
[32] Hu M L, Shen S Q and Fan F 2017 Phys. Rev. A 96 052309
[33] Streltsov A, Kampermann H, Wölk S, Gessner M and Bruß D 2018 New J. Phys. 20 053058
[34] Cheng S and Hall M J W 2015 Phys. Rev. A 92 042101
[35] Yuan X, Bai G, Peng T and Ma X 2017 Phys. Rev. A 96 032313
[36] Singh U, Bera M N, Dhar H S and Pati A K 2015 Phys. Rev. A 91 052115
[37] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
[38] Regula B, Fang K, Wang X and Adesso G 2018 Phys. Rev. Lett. 121 010401
[39] Fang K, Wang X, Lami L, Regula B and Adesso G 2018 Phys. Rev. Lett. 121 070404
[40] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118
[41] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406
[42] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405
[43] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
[44] Hillery M 2016 Phys. Rev. A 93 012111
[45] Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307
[46] Chen J J, Cui J, Zhang Y R and Fan H 2016 Phys. Rev. A 94 022112
[47] Karpat G, Çakmak B and Fanchini F F 2014 Phys. Rev. B 90 104431
[48] Lei S G and Tong P Q 2016 Quantum Inf. Process. 15 1811
[49] Li Y C and Lin H Q 2016 Sci. Rep. 6 26365
[50] Malvezzi A L, Karpat G, Çakmak B C, Fanchini F F, Debarba T and Vianna R O 2016 Phys. Rev. B 93 184428
[51] Yi T C, You W L, Wu N and Oleś A M 2019 Phys. Rev. B 100 024423
[52] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
[53] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[54] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[55] Hu X, Milne A, Zhang B and Fan H 2015 Sci. Rep. 6 19365
[56] Zhang J, Yang S R, Zhang Y and Yu C S 2017 Sci. Rep. 7 45598
[57] Hu X and Fan H 2016 Sci. Rep. 6 34380
[58] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301
[59] Hu M L and Fan H 2018 Phys. Rev. A 98 022312
[60] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317
[61] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 045202
[62] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 075201
[63] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 095208
[64] Xie Y X and Zhang Y H 2020 Laser Phys. Lett. 17 035206
[65] Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305
[66] Wootters W K 1986 Found. Phys. 16 391
[67] Wootters W K and Fields B D 1989 Ann. Phys. 191 363
[68] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[69] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[70] Alcaraz F C, Barber M N and Batchelor M T 1988 Ann. Phys. 182 280
[71] Nepomechie R I and Wang C G 2014 J. Phys. A 47 505004
[72] Canosa N and Rossignoli R 2007 Phys. Rev. A 75 032350
[73] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[74] Hu M and Tian D 2007 Sci. Chin. Ser. G 50 208
[75] Zeng S P, Shi H L, Zhou X, Wang X H, Liu S Y and Hu M L 2019 Sci. Rep. 9 1083
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!