|
|
Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions |
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞)† |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
|
Abstract We study steered coherence (SC) and entanglement in a three-spin Heisenberg XX model under twisted boundary conditions and show that their strengths can be significantly enhanced by tuning the twist angle. The optimal twist angle θopt for achieving the maximum l1 norm of SC is π in the region of weak field B and decreases gradually from π to 0 when B increases after a critical value, while for the relative entropy of SC, θopt equals π in the weak field region and 0 otherwise. The entanglement and the critical temperature above which the entanglement vanishes can also be significantly enhanced by tuning the twist angle from 0 to π.
|
Received: 31 October 2020
Revised: 08 January 2021
Accepted manuscript online: 01 February 2021
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
75.10.Pq
|
(Spin chain models)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675129). |
Corresponding Authors:
Yu-Xia Xie
E-mail: yuxia1124@163.com
|
Cite this article:
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞) Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions 2021 Chin. Phys. B 30 070303
|
[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) [2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [4] Modi K, Brodutch A, Cable H, Paterek Z and Vedral V 2012 Rev. Mod. Phys. 84 1655 [5] Luo S and Fu S 2011 Phys. Rev. Lett. 106 120401 [6] Hu M L and Fan H 2012 Ann. Phys. 327 2343 [7] Hu M L and Fan H 2015 New J. Phys. 17 033004 [8] Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1 [9] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [10] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 [11] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 [12] Bu K, Anand N and Singh U 2018 Phys. Rev. A 97 032342 [13] Yu C S 2017 Phys. Rev. A 95 042337 [14] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124 [15] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 [16] Qi X, Gao T and Yan F 2017 J. Phys. A 50 285301 [17] Xi Z J and Yuwen S S 2019 Phys. Rev. A 99 022340 [18] Hu M L and Fan H 2016 Sci. Rep. 6 29260 [19] Zhang Y J, Han W, Xia Y J, Yu Y M and Fan H 2015 Sci. Rep. 5 13359 [20] Hu M L and Fan H 2015 Phys. Rev. A 91 052311 [21] Liu X B, Tian Z H, Wang J C and Jing J L 2016 Ann. Phys. 366 102 [22] Guarnieri G, Kolář M and Filip R 2018 Phys. Rev. Lett. 121 070401 [23] Mukhopadhyay C 2018 Phys. Rev. A 98 012102 [24] Hu M and Zhou W 2019 Laser Phys. Lett. 16 045201 [25] Hu M L and Fan H 2020 Sci. Chin.-Phys. Mech. Astron. 63 230322 [26] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 [27] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303 [28] Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402 [29] Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602 [30] Yao Y, Dong G H, Ge L, Li M and Sun C P 2016 Phys. Rev. A 94 062339 [31] Yu C S, Yang S R and Guo B Q 2016 Quantum Inf. Process. 15 3773 [32] Hu M L, Shen S Q and Fan F 2017 Phys. Rev. A 96 052309 [33] Streltsov A, Kampermann H, Wölk S, Gessner M and Bruß D 2018 New J. Phys. 20 053058 [34] Cheng S and Hall M J W 2015 Phys. Rev. A 92 042101 [35] Yuan X, Bai G, Peng T and Ma X 2017 Phys. Rev. A 96 032313 [36] Singh U, Bera M N, Dhar H S and Pati A K 2015 Phys. Rev. A 91 052115 [37] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402 [38] Regula B, Fang K, Wang X and Adesso G 2018 Phys. Rev. Lett. 121 010401 [39] Fang K, Wang X, Lami L, Regula B and Adesso G 2018 Phys. Rev. Lett. 121 070404 [40] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118 [41] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 [42] Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405 [43] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407 [44] Hillery M 2016 Phys. Rev. A 93 012111 [45] Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307 [46] Chen J J, Cui J, Zhang Y R and Fan H 2016 Phys. Rev. A 94 022112 [47] Karpat G, Çakmak B and Fanchini F F 2014 Phys. Rev. B 90 104431 [48] Lei S G and Tong P Q 2016 Quantum Inf. Process. 15 1811 [49] Li Y C and Lin H Q 2016 Sci. Rep. 6 26365 [50] Malvezzi A L, Karpat G, Çakmak B C, Fanchini F F, Debarba T and Vianna R O 2016 Phys. Rev. B 93 184428 [51] Yi T C, You W L, Wu N and Oleś A M 2019 Phys. Rev. B 100 024423 [52] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329 [53] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 [54] Hu M L and Fan H 2017 Phys. Rev. A 95 052106 [55] Hu X, Milne A, Zhang B and Fan H 2015 Sci. Rep. 6 19365 [56] Zhang J, Yang S R, Zhang Y and Yu C S 2017 Sci. Rep. 7 45598 [57] Hu X and Fan H 2016 Sci. Rep. 6 34380 [58] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301 [59] Hu M L and Fan H 2018 Phys. Rev. A 98 022312 [60] Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317 [61] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 045202 [62] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 075201 [63] Xie Y X and Gao Y Y 2019 Laser Phys. Lett. 16 095208 [64] Xie Y X and Zhang Y H 2020 Laser Phys. Lett. 17 035206 [65] Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305 [66] Wootters W K 1986 Found. Phys. 16 391 [67] Wootters W K and Fields B D 1989 Ann. Phys. 191 363 [68] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [69] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [70] Alcaraz F C, Barber M N and Batchelor M T 1988 Ann. Phys. 182 280 [71] Nepomechie R I and Wang C G 2014 J. Phys. A 47 505004 [72] Canosa N and Rossignoli R 2007 Phys. Rev. A 75 032350 [73] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901 [74] Hu M and Tian D 2007 Sci. Chin. Ser. G 50 208 [75] Zeng S P, Shi H L, Zhou X, Wang X H, Liu S Y and Hu M L 2019 Sci. Rep. 9 1083 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|