|
|
|
Dark-gap solitons with mixed nonlinear and linear lattices |
| Xue-Fei Zhang(张雪菲), Xiao-Yang Wang(王笑阳), Hui-Lian Wei(魏慧莲), and Tian-Fu Xu(徐天赋)† |
| Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
|
|
Abstract We study the existence and stability of dark-gap solitons in linear lattice and nonlinear lattices. The results indicate that the combination of linear and nonlinear lattices gives dark-gap solitons unique properties. The linear lattice can stabilize dark-gap solitons, while the nonlinear lattice reduces the stability of dark-gap solitons. On the basis of numerical analysis, we investigate the effects of lattice depth, chemical potential, nonlinear lattice amplitude, and nonlinear lattice period on the soliton in mixed lattices with the same and different periods. The stability of dark-gap soliton is studied carefully by means of real-time evolution and linear stability analysis. Dark-gap solitons can exist stably in the band gap, but the solitons formed by the mixed lattices are slightly different when the period is the same or different.
|
Received: 21 February 2025
Revised: 11 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
| |
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
| |
43.25.Rq
|
(Solitons, chaos)
|
|
| Fund: Project supported by the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H). |
Corresponding Authors:
Tian-Fu Xu
E-mail: tfxu@ysu.edu.cn
|
Cite this article:
Xue-Fei Zhang(张雪菲), Xiao-Yang Wang(王笑阳), Hui-Lian Wei(魏慧莲), and Tian-Fu Xu(徐天赋) Dark-gap solitons with mixed nonlinear and linear lattices 2025 Chin. Phys. B 34 080303
|
[1] Gibbon J D 1973 Soliton Solutions of Non Linear Wave Equations and Some Related Problems in Linear and Non-Linear Optics (University of Manchester) [2] Elgin J N 1993 Phys. Rev. A 47 4331 [3] Krämer M, Pitaevskii L and Stringari S 2002 Phys. Rev. Lett. 88 180404 [4] Combescot M, Combescot R and Dubin F 2017 Rep. Prog. Phys. 80 066501 [5] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198 [6] Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496 [7] Wen J M, Bo W B, Wen X K and Dai C Q 2023 Acta Phys. Sin. 72 100502 (in Chinese) [8] Biancalana F, Amann A and O’Reilly E P 2008 Phys. Rev. A 77 011801 [9] Grigoriev V V and Biancalana F 2010 Photonic Nanostruct. 8 285 [10] Aceves A B, Fibich G and Ilan B 2004 Physica D 189 277 [11] Otsobo J A A, Megne L T, Tabi CB and Kofané TC 2022 Chaos, Solitons and Fractals 158 112034 [12] Yang J and Zhang Y P 2023 Phys. Rev. A 107 023316 [13] Pang F Z, Gegen H and Zhao X M 2023 Chin. Phys. B 32 050205 [14] Li P P, Zhao Y, Xu S L, Zhou Q, Fu Q D, Ye FW, Hua C P, Chen MW, Hu H J and Zhou Q Q 2023 Chin. Phys. Lett. 40 28 [15] Cerda-Méndez E A, Sarkar D, Krizhanovskii D N, Gavrilov S S, Biermann K, Skolnick M S and Santos P V 2013 Phys. Rev. Lett. 111 146401 [16] Busch T and Anglin J R 2000 Phys. Rev. Lett. 84 2298 [17] Stellmer S, Becker C, Soltan-Panahi P, Richter E M, Dörscher S, Baumert M, Kronjäger J, Bongs K and Sengstock K 2008 Phys. Rev. Lett. 101 120406 [18] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401 [19] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404 [20] Shomroni I, Lahoud E, Levy S and Steinhauer J 2009 Nat. Phys. 5 193 [21] Frantzeskakis D J 2010 J. Phys. A: Math. Theor. 43 213001 [22] Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2015 SIAM [23] Tsitoura F, Anastassi Z A, Marzuola J L, Kevrekidis P G and Frantzeskakis D J 2016 Phy. Rev. A 94 063612 [24] Sciacca M, Barenghi C F and Parker N G 2017 Phys. Rev. A 95 013628 [25] Liu W J, Huang L G, Huang P, Li Y Q and Lei M 2016 Appl. Math. Lett. 61 80 [26] Zhou Q, Xu, M Y, Sun Y Z, Zhong Y and Mirzazadeh M 2022 Nonlinear Dyn. 110 1747 [27] Li S R, Bao Y Y, Liu Y H and Xu T F 2022 Chaos, Solitons and Fractals 162 112484 [28] Li X Y, Qi J J, Zhao D and Liu W M 2023 Acta Phys. Sin. 72 106701 (in Chinese) [29] Bao Y Y, Li S R, Liu Y H and Xu T F 2022 Chaos, Solitons and Fractals 156 111853 [30] Alexander T J, Tsolias G A, Demirkaya A, Decker R J, Martijn de Sterke C and Kevrekidis P G 2022 Opt. Lett. 47 1174 [31] He T and Wang Y Y 2021 Appl. Math. Lett. 121 107405 [32] Paredes A, Salgueiro J R and Michinel H 2022 Physica D 437 133340 [33] Zeng J H and Malomed B A 2012 Phys. Rev. A 85 023824 [34] Zeng L W and Zeng J H 2019 Adv. Photon. Res. 1 046004 [35] Xie Q T 2021 Results Phys. 28 104575 [36] Hong J, Wang C H and Zhang Y P 2023 Phys. Rev. E 107 044219 [37] He Y J, Zhu X, Mihalache D, Liu J L and Chen Z X 2012 Phys. Rev. A 85 013831 [38] He Y J, Zhu X, Mihalache D, Liu J L and Chen Z X 2012 Opt. Commun. 285 3320 [39] Brazhnyi V A and Konotop V V 2004 Mod. Phys. Lett. B 18 627 [40] Zeng L W and Zeng J H 2019 Opt. Lett. 44 2661 [41] Li J W, Zhang Y P and Zeng J H 2022 Chaos, Solitons and Fractals 157 111950 [42] Zeng L W, Shi J C, Li J W, Li J Z and Wang Q 2022 Opt. Express 30 42504 [43] Dasgupta R, Venkatesh B P and Watanabe G 2016 Phys. Rev. A 93 063618 [44] Zhang S L, Zhou Z W and Wu B 2013 Phys. Rev. A 87 013633 [45] Li J W and Zeng J H 2021 Phys. Rev. A 103 013320 [46] Ma J P, Wang Q Q, Tu P, Shao K H, Zhao Y X, Su R M, Zhao X, Xi B L and Shi Y R 2024 Phys. Scr. 99 045251 [47] Zhou Y S, Meng H J, Zhang J, Li X L, Ren X P, Wan X H, Zhou Z K, Wang J, Fan X B and Shi Y R 2021 Sci. Rep. 11 11382 [48] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150 [49] Wu S L, Huang C M and Liu Y 2008 Appl. Math. Comput. 201 553 [50] Zhang Y P, Liang Z X and Wu B 2009 Phys. Rev. A 80 063815 [51] Cao Y and Xu T F 2023 Phys. Rev. A 108 013509 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|