|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride |
| Jing-Jing Zheng(郑晶晶)1,†, Yuxi Chen(陈禹西)2,†, Chengxiang Zhao(赵承祥)2, Junfeng Zhang(张均锋)3,‡, Ping Zhang(张平)4, Bao-Tian Wang(王保田)5, and Jiang-Jiang Ma(马江将)2§ |
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China; 2 School of Physics and Electronics Engineering, Shanxi Normal University, Taiyuan 030031, China; 3 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China; 4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 5 Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China |
|
|
|
|
Abstract The ground-state magnetic ordering of uranium mononitride (UN) remains a contentious topic due to the unexpected lack of crystallographic distortion in the traditionally accepted $1\bm{k}$ antiferromagnetic (AFM) state. This discrepancy casts doubt on the validity of the $1\bm{k}$ magnetic ordering of UN. Here, we investigate the crystal structure, high-pressure phase transitions, and dynamical and mechanical properties of UN in its $1\bm{k}$ and $3\bm{k}$ AFM ground states using density functional theory (DFT). Our results reveal that the undistorted $3\bm{k}$ AFM state of Fm$\overline{3}$m within the ${\rm DFT}+{U}+{\rm SOC}$ scheme is more consistent with experimental results. The Hubbard U and spin-orbit coupling (SOC) are critical for accurately capturing the crystal structure, high-pressure structural phase transition, and dynamical properties of UN. In addition, we have identified a new high-pressure magnetic phase transition from the nonmagnetic (NM) phase of R$\overline{3}$m to the P$6_{3}$/mmc AFM state. Electronic structure analysis reveals that the magnetic ordering in the ground state is primarily linked to variations in partial 5f orbital distributions. Our calculations provide valuable theoretical insights into the complex magnetic structures of a typical strongly correlated uranium-based compound. Moreover, they provide a framework for understanding other similar actinide systems.
|
Received: 18 March 2025
Revised: 23 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
| |
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
| |
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204482 and U2430211), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0537), the Fundamental Research Program of Shanxi Province (Grant No. 202103021224250), and the Hainan Provincial Natural Science Foundation of China (Grant No. 225MS076). |
Corresponding Authors:
Junfeng Zhang, Jiang-Jiang Ma
E-mail: zhangjf@hainnu.edu.cn;majiangjiang@sxnu.edu.cn
|
Cite this article:
Jing-Jing Zheng(郑晶晶), Yuxi Chen(陈禹西), Chengxiang Zhao(赵承祥), Junfeng Zhang(张均锋), Ping Zhang(张平), Bao-Tian Wang(王保田), and Jiang-Jiang Ma(马江将) Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride 2025 Chin. Phys. B 34 087101
|
[1] Ogloblichev V, Verkhovskii S, Mirmelstein A, Piskunov Y, Germov A, Potapov A, Gubkin A and Andreev A 2021 Phys. Rev. B 104 155148 [2] Kocevski V, Cooper M W, Claisse A J and Andersson D A 2022 J. Nucl. Mater. 562 153553 [3] Mishchenko Y, Johnson K D, Jadern as D, Wallenius J and Lopes D A 2021 J. Nucl. Mater. 556 153249 [4] Gorbunov D, Nomura T, Zvyagin A, Henriques M, Andreev A, Skourski Y, Zvyagina G, Troc R, Zherlitsyn S and Wosnitza J 2019 Phys. Rev. B 100 024417 [5] Fujimori S I, Ohkochi T, Okane T, Saitoh Y, Fujimori A, Yamagami H, Haga Y, Yamamoto E and Onuki Y 2012 Phys. Rev. B 86 235108 [6] AbdulHameed M, Beeler B, Galvin C O and Cooper M W 2024 J. Nucl. Mater. 600 155247 [7] Hamann S, Forster T, Gorbunov D I, König M, Uhlarz M, Wosnitza J and Helm T 2021 Phys. Rev. B 104 155123 [8] Sikorski E L, Jaques B J and Li L 2021 J. Appl. Phys. 130 [9] Curry N 1965 Proc. Phys. Soc. 86 1193 [10] Van Doorn C and Du Plessis P D V 1977 J. Low Temp. Phys. 28 391 [11] Marples J 1970 J. Phys. Chem. Solids 31 2431 [12] Marples J, Sampson C, Wedgwood F and Kuznietz M 1975 J. Phys. C: Solid State Phys. 8 708 [13] Knott H, Lander G, Mueller M and Vogt O 1980 Phys. Rev. B 21 4159 [14] Bright E L, Springell R, Porter D, Collins S and Lander G H 2019 Phys. Rev. B 100 134426 [15] Zhou S, Ma H, Xiao E, Gofryk K, Jiang C, Manley M E, Hurley D H and Marianetti C A 2022 Phys. Rev. B 106 125134 [16] Pegg J T, Shields A E, Storr M T, Wills A S, De Leeuw N H and Scanlon D O 2019 Phys. Chem. Chem. Phys. 21 760 [17] Dorado B and Garcia P 2013 Phys. Rev. B 87 195139 [18] Wang B T, Zhang P, Lizarraga R, Di Marco I and Eriksson O 2013 Phys. Rev. B 88 104107 [19] Blackburn E, Caciuffo R, Magnani N, Santini P, Brown P, Enderle M and Lander G 2005 Phys. Rev. B 72 184411 [20] Lu Y, Wang B T, Li R W, Shi H L and Zhang P 2011 J. Nucl. Mater. 410 46 [21] Lu Y, Wang B T, Li R W, Shi H and Zhang P 2010 J. Nucl. Mater. 406 218 [22] Atta-Fynn R and Ray A K 2007 Phys. Rev. B 76 115101 [23] Brooks M and Kelly P 1983 Phys. Rev. Lett. 51 1708 [24] Cooper B R 1982 J. Magn. Magn. Mater. 29 230 [25] Chan S K 1971 J. Phys. Chem. Solids 32 1111 [26] Skriver H L, Andersen O and Johansson B 1980 Phys. Rev. Lett. 44 1230 [27] Brooks M 1984 J. Phys. F: Met. Phys. 14 639 [28] Sedmidubsky D, Konings R and Novak P 2005 J. Nucl. Mater. 344 40 [29] Yin Q, Kutepov A, Haule K, Kotliar G, Savrasov S Y and Pickett W E 2011 Phys. Rev. B 84 195111 [30] Gryaznov D, Heifets E and Kotomin E 2012 Phys. Chem. Chem. Phys. 14 4482 [31] Lan J H, Zhao Z C, Wu Q, Zhao Y L, Chai Z F and Shi W Q 2013 J. Appl. Phys. 114 [32] Kocevski V, Rehn D A, Cooper MWand Andersson D A 2022 J. Nucl. Mater. 559 153401 [33] Olsen J S, Gerward L and Benedict U 1985 J. Appl. Crystallogr. 18 37 [34] Le Bihan T, Idiri M and Heathman S 2003 J. Alloys Compd. 358 120 [35] Modak P and Verma A K 2011 Phys. Rev. B 84 024108 [36] Mei Z G and Stan M 2014 J. Alloys Compd. 588 648 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Blochl P E 1994 Phys. Rev. B 50 17953 [39] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245 [40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [41] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [44] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C and Sutton A P 1998 Phys. Rev. B 57 1505 [45] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [46] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [47] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [48] Wang D, Zhang H, Chen H L, Wu J, Zang Q J and Lu W C 2019 Phys. Lett. A 383 774 [49] Kruglov I A, Kvashnin A G, Goncharov A F, Oganov A R, Lobanov S S, Holtgrewe N, Jiang S, Prakapenka V B, Greenberg E and Yanilkin A V 2018 Sci. Adv. 4 eaat9776 [50] Wang X, Li M, Zheng F and Zhang P 2018 Phys. Lett. A 382 2959 [51] Ma J J, Zhang C B, Qiu R, Zhang P, Ao B and Wang B T 2021 Phys. Rev. B 104 174103 [52] Song H X, Geng H Y and Wu Q 2012 Phys. Rev. B 85 064110 [53] Muromura T and Tagawa H 1979 J. Nucl. Mater. 79 [54] Jackman J, Holden T, BuyersW, DuPlessis P D V, Vogt O and Genossar J 1986 Phys. Rev. B 33 7144 [55] Liang R T, Bo T, Yin W Q, Nie C M, Zhang L, Chai Z F and Shi W Q 2023 Nucl. Eng. Technol. 55 2556 [56] Zheng J J, Wang B T, Di Marco I and Li W D 2014 Int. J. Hydrog. Energy 39 13255 [57] Wang B T, Zhang P, Song H, Shi H, Li D and Li W D 2010 J. Nucl. Mater. 401 124 [58] Lu Y, Li D F, Wang B T, Li RW and Zhang P 2011 J. Nucl. Mater. 408 136 [59] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [60] Nye J F 1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press) [61] Salleh M, MacDonald J E, Saunders G and Du Plessis P D V 1986 J. Mater. Sci. 21 2577 [62] Hou Y F, Jiang W, Li S J, Fu Z G and Zhang P 2023 Chin. Phys. B 32 027103 [63] Allen J P and Watson G W 2014 Phys. Chem. Chem. Phys. 16 21016 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|