Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087101    DOI: 10.1088/1674-1056/add4e6
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride

Jing-Jing Zheng(郑晶晶)1,†, Yuxi Chen(陈禹西)2,†, Chengxiang Zhao(赵承祥)2, Junfeng Zhang(张均锋)3,‡, Ping Zhang(张平)4, Bao-Tian Wang(王保田)5, and Jiang-Jiang Ma(马江将)
1 Department of Physics, Taiyuan Normal University, Jinzhong 030619, China;
2 School of Physics and Electronics Engineering, Shanxi Normal University, Taiyuan 030031, China;
3 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China;
4 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
5 Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
Abstract  The ground-state magnetic ordering of uranium mononitride (UN) remains a contentious topic due to the unexpected lack of crystallographic distortion in the traditionally accepted $1\bm{k}$ antiferromagnetic (AFM) state. This discrepancy casts doubt on the validity of the $1\bm{k}$ magnetic ordering of UN. Here, we investigate the crystal structure, high-pressure phase transitions, and dynamical and mechanical properties of UN in its $1\bm{k}$ and $3\bm{k}$ AFM ground states using density functional theory (DFT). Our results reveal that the undistorted $3\bm{k}$ AFM state of Fm$\overline{3}$m within the ${\rm DFT}+{U}+{\rm SOC}$ scheme is more consistent with experimental results. The Hubbard U and spin-orbit coupling (SOC) are critical for accurately capturing the crystal structure, high-pressure structural phase transition, and dynamical properties of UN. In addition, we have identified a new high-pressure magnetic phase transition from the nonmagnetic (NM) phase of R$\overline{3}$m to the P$6_{3}$/mmc AFM state. Electronic structure analysis reveals that the magnetic ordering in the ground state is primarily linked to variations in partial 5f orbital distributions. Our calculations provide valuable theoretical insights into the complex magnetic structures of a typical strongly correlated uranium-based compound. Moreover, they provide a framework for understanding other similar actinide systems.
Keywords:  UN      antiferromagnetic      magnetic order      density functional theory  
Received:  18 March 2025      Revised:  23 April 2025      Accepted manuscript online:  07 May 2025
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204482 and U2430211), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2020L0537), the Fundamental Research Program of Shanxi Province (Grant No. 202103021224250), and the Hainan Provincial Natural Science Foundation of China (Grant No. 225MS076).
Corresponding Authors:  Junfeng Zhang, Jiang-Jiang Ma     E-mail:  zhangjf@hainnu.edu.cn;majiangjiang@sxnu.edu.cn

Cite this article: 

Jing-Jing Zheng(郑晶晶), Yuxi Chen(陈禹西), Chengxiang Zhao(赵承祥), Junfeng Zhang(张均锋), Ping Zhang(张平), Bao-Tian Wang(王保田), and Jiang-Jiang Ma(马江将) Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride 2025 Chin. Phys. B 34 087101

[1] Ogloblichev V, Verkhovskii S, Mirmelstein A, Piskunov Y, Germov A, Potapov A, Gubkin A and Andreev A 2021 Phys. Rev. B 104 155148
[2] Kocevski V, Cooper M W, Claisse A J and Andersson D A 2022 J. Nucl. Mater. 562 153553
[3] Mishchenko Y, Johnson K D, Jadern as D, Wallenius J and Lopes D A 2021 J. Nucl. Mater. 556 153249
[4] Gorbunov D, Nomura T, Zvyagin A, Henriques M, Andreev A, Skourski Y, Zvyagina G, Troc R, Zherlitsyn S and Wosnitza J 2019 Phys. Rev. B 100 024417
[5] Fujimori S I, Ohkochi T, Okane T, Saitoh Y, Fujimori A, Yamagami H, Haga Y, Yamamoto E and Onuki Y 2012 Phys. Rev. B 86 235108
[6] AbdulHameed M, Beeler B, Galvin C O and Cooper M W 2024 J. Nucl. Mater. 600 155247
[7] Hamann S, Forster T, Gorbunov D I, König M, Uhlarz M, Wosnitza J and Helm T 2021 Phys. Rev. B 104 155123
[8] Sikorski E L, Jaques B J and Li L 2021 J. Appl. Phys. 130
[9] Curry N 1965 Proc. Phys. Soc. 86 1193
[10] Van Doorn C and Du Plessis P D V 1977 J. Low Temp. Phys. 28 391
[11] Marples J 1970 J. Phys. Chem. Solids 31 2431
[12] Marples J, Sampson C, Wedgwood F and Kuznietz M 1975 J. Phys. C: Solid State Phys. 8 708
[13] Knott H, Lander G, Mueller M and Vogt O 1980 Phys. Rev. B 21 4159
[14] Bright E L, Springell R, Porter D, Collins S and Lander G H 2019 Phys. Rev. B 100 134426
[15] Zhou S, Ma H, Xiao E, Gofryk K, Jiang C, Manley M E, Hurley D H and Marianetti C A 2022 Phys. Rev. B 106 125134
[16] Pegg J T, Shields A E, Storr M T, Wills A S, De Leeuw N H and Scanlon D O 2019 Phys. Chem. Chem. Phys. 21 760
[17] Dorado B and Garcia P 2013 Phys. Rev. B 87 195139
[18] Wang B T, Zhang P, Lizarraga R, Di Marco I and Eriksson O 2013 Phys. Rev. B 88 104107
[19] Blackburn E, Caciuffo R, Magnani N, Santini P, Brown P, Enderle M and Lander G 2005 Phys. Rev. B 72 184411
[20] Lu Y, Wang B T, Li R W, Shi H L and Zhang P 2011 J. Nucl. Mater. 410 46
[21] Lu Y, Wang B T, Li R W, Shi H and Zhang P 2010 J. Nucl. Mater. 406 218
[22] Atta-Fynn R and Ray A K 2007 Phys. Rev. B 76 115101
[23] Brooks M and Kelly P 1983 Phys. Rev. Lett. 51 1708
[24] Cooper B R 1982 J. Magn. Magn. Mater. 29 230
[25] Chan S K 1971 J. Phys. Chem. Solids 32 1111
[26] Skriver H L, Andersen O and Johansson B 1980 Phys. Rev. Lett. 44 1230
[27] Brooks M 1984 J. Phys. F: Met. Phys. 14 639
[28] Sedmidubsky D, Konings R and Novak P 2005 J. Nucl. Mater. 344 40
[29] Yin Q, Kutepov A, Haule K, Kotliar G, Savrasov S Y and Pickett W E 2011 Phys. Rev. B 84 195111
[30] Gryaznov D, Heifets E and Kotomin E 2012 Phys. Chem. Chem. Phys. 14 4482
[31] Lan J H, Zhao Z C, Wu Q, Zhao Y L, Chai Z F and Shi W Q 2013 J. Appl. Phys. 114
[32] Kocevski V, Rehn D A, Cooper MWand Andersson D A 2022 J. Nucl. Mater. 559 153401
[33] Olsen J S, Gerward L and Benedict U 1985 J. Appl. Crystallogr. 18 37
[34] Le Bihan T, Idiri M and Heathman S 2003 J. Alloys Compd. 358 120
[35] Modak P and Verma A K 2011 Phys. Rev. B 84 024108
[36] Mei Z G and Stan M 2014 J. Alloys Compd. 588 648
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Blochl P E 1994 Phys. Rev. B 50 17953
[39] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[40] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[41] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[44] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C and Sutton A P 1998 Phys. Rev. B 57 1505
[45] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[46] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[47] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[48] Wang D, Zhang H, Chen H L, Wu J, Zang Q J and Lu W C 2019 Phys. Lett. A 383 774
[49] Kruglov I A, Kvashnin A G, Goncharov A F, Oganov A R, Lobanov S S, Holtgrewe N, Jiang S, Prakapenka V B, Greenberg E and Yanilkin A V 2018 Sci. Adv. 4 eaat9776
[50] Wang X, Li M, Zheng F and Zhang P 2018 Phys. Lett. A 382 2959
[51] Ma J J, Zhang C B, Qiu R, Zhang P, Ao B and Wang B T 2021 Phys. Rev. B 104 174103
[52] Song H X, Geng H Y and Wu Q 2012 Phys. Rev. B 85 064110
[53] Muromura T and Tagawa H 1979 J. Nucl. Mater. 79
[54] Jackman J, Holden T, BuyersW, DuPlessis P D V, Vogt O and Genossar J 1986 Phys. Rev. B 33 7144
[55] Liang R T, Bo T, Yin W Q, Nie C M, Zhang L, Chai Z F and Shi W Q 2023 Nucl. Eng. Technol. 55 2556
[56] Zheng J J, Wang B T, Di Marco I and Li W D 2014 Int. J. Hydrog. Energy 39 13255
[57] Wang B T, Zhang P, Song H, Shi H, Li D and Li W D 2010 J. Nucl. Mater. 401 124
[58] Lu Y, Li D F, Wang B T, Li RW and Zhang P 2011 J. Nucl. Mater. 408 136
[59] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[60] Nye J F 1985 Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press)
[61] Salleh M, MacDonald J E, Saunders G and Du Plessis P D V 1986 J. Mater. Sci. 21 2577
[62] Hou Y F, Jiang W, Li S J, Fu Z G and Zhang P 2023 Chin. Phys. B 32 027103
[63] Allen J P and Watson G W 2014 Phys. Chem. Chem. Phys. 16 21016
[1] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[2] A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4
Mohsin Rafique(莫辛·拉菲克), Rui Wu(吴蕊), Zefeng Lin(林泽丰), Kui Jin(金魁), Qi-Kun Xue(薛其坤), and Ding Zhang(张定). Chin. Phys. B, 2025, 34(9): 097404.
[3] Semiclassical Coulomb-scattering model for strong-field tunneling ionization
Qing Zhao(赵晴), Yigen Peng(彭易根), Jiayin Che(车佳殷), Chao Chen(陈超), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2025, 34(9): 093201.
[4] Generation of multitype, multicavity chaotic attractors via impulse-function-based state variable extension
Xiaoyu Hu(胡晓宇), Siteng Wang(王思腾), Panpan Wu(邬盼盼), Hongbo Cao(曹红博), Tianwei Yang(杨天纬), and Zhongshuo Dong(董忠硕). Chin. Phys. B, 2025, 34(8): 080502.
[5] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[6] Self-powered broadband photodetector based on pyramid-structured Si/TiO2 heterojunction
Leyao Wu(吴乐瑶), Xinnan Shi(师馨楠), Haibo Fan(范海波), Qiujie Li(李秋洁), Peng Hu(胡鹏), and Feng Teng(滕凤). Chin. Phys. B, 2025, 34(8): 088501.
[7] Manipulating the magnetic properties of MnBi2Te4 through electrochemical organic molecule intercalation
Yu Du(杜钰), Heng Zhang(张恒), Fuwei Zhou(周福伟), Tianqi Wang(王天奇), Jiajun Li(李佳骏), Wuyi Qi(戚无逸), Yiying Zhang (张祎颖), Yefan Yu(俞业凡), Fucong Fei(费付聪), and Fengqi Song(宋凤麒). Chin. Phys. B, 2025, 34(8): 087302.
[8] Duality symmetry, two entropy functions, and an eigenvalue problem in generalized Gibbs' theory
Jeffrey Commons, Ying-Jen Yang(杨颖任), and Hong Qian(钱纮). Chin. Phys. B, 2025, 34(8): 080201.
[9] Spiral trajectories of asymmetric molecules
Nan Sheng(盛楠), Shiqi Sheng(盛世奇), Yu-Song Tu(涂育松), Rong-Zheng Wan(万荣正), Zuo-Wei Wang(王作维), Zhanchun Tu(涂展春), and Hai-Ping Fang(方海平). Chin. Phys. B, 2025, 34(8): 080507.
[10] Force-dependent unfolding dynamics of spectrin R16: Resolving experimental contradiction and unveiling model consistency
Wanxing Zhang(张万星), Zhuwei Zhang(张珠伟), Zhenyong Xue(薛振勇), Yuhang Zhang(张宇航), Shimin Le(乐世敏), and Hu Chen(陈虎). Chin. Phys. B, 2025, 34(8): 088708.
[11] Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[12] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[13] Stabilized adaptive waveform inversion for enhanced robustness in Gaussian penalty matrix parameterization and transcranial ultrasound imaging
Jun-Jie Zhao(赵俊杰), Shan-Mu Jin(金山木), Yue-Kun Wang(王月坤), Yu Wang(王裕), and Ya-Hui Peng(彭亚辉). Chin. Phys. B, 2025, 34(8): 084301.
[14] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[15] Effect of side group on mechanically induced conductance switching in 4,40-dipyridyl-based single-molecule junctions
Zhen Wan(万振), Chang-Feng Zheng(郑长风), Lin Liu(刘琳), Yun-Long Ge(葛云龙), Guang-Ping Zhang(张广平), Shuai Qiu(邱帅), Hui Wang(王辉), and Zong-Liang Li(李宗良). Chin. Phys. B, 2025, 34(8): 087202.
No Suggested Reading articles found!