|
|
|
Polarization impact on sensitivity of Rydberg atom-based microwave sensors |
| Minghao Cai(蔡明皓)1,2, Aomao Wei(魏奥贸)1, Shanshan Chen(陈珊珊)1, and Yuming Huang(黄聿铭)1,† |
1 College of Photoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 Chongqing Integrated Circuit Collaborative Innovation Center, Chongqing 401332, China |
|
|
|
|
Abstract We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator (LO) microwave field strength. By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup, we study the Autler-Townes (AT) splitting spectrum and optical response of probe transmission, and analyze their sensing effects. The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration. We achieve a sensitivity of 4.150(69) $\mathrm{nV}\cdot {\mathrm{cm}}^{-1}\cdot {\mathrm{Hz}}^{-1/2}$ at an LO microwave field strength of 1.74 mV/cm. This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors.
|
Received: 19 December 2024
Revised: 25 March 2025
Accepted manuscript online: 24 April 2025
|
|
PACS:
|
32.80.Ee
|
(Rydberg states)
|
| |
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
| |
07.57.Kp
|
(Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)
|
|
| Fund: Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2024NSCQMSX0880 and CSTB2024NSCQ-MSX1187) and the Fund from Chongqing University of Posts and Telecommunications (Grants Nos. A2024-33 and A2023-54). |
Corresponding Authors:
Yuming Huang
E-mail: huangym@cqupt.edu.cn
|
Cite this article:
Minghao Cai(蔡明皓), Aomao Wei(魏奥贸), Shanshan Chen(陈珊珊), and Yuming Huang(黄聿铭) Polarization impact on sensitivity of Rydberg atom-based microwave sensors 2025 Chin. Phys. B 34 083201
|
[1] Yuan S X, Jing M Y, Zhang H, Zhang L J, Xiao L T and Jia S T 2024 Opt. Express 32 8378 [2] Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M and Jia S T 2023 Opt. Express 31 29228 [3] Borówka S, Pylypenko U, MazelanikMand Parniak M 2023 Nat. Photonics 18 32 [4] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169 [5] Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B 48 202001 [6] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T and Jia S T 2020 Nat. Phys. 16 911 [7] Prajapati N, Robinson A K, Berweger S, SimonsMT, Artusio-Glimpse A B and Holloway C L 2021 Appl. Phys. Lett. 119 214001 [8] Meyer D H, Hill J C, Kunz P D and Cox K C 2023 Phys. Rev. Appl. 19 014025 [9] Gallagher T F 1994 Rydberg Atom (Cambridge: Cambridge University Press) [10] Holloway C L, Simons M T, Abdulaziz H, Gordon J A, Anderson D A, Raithel G and Voran S 2021 IEEE Antenna Propag. Mag. 63 63 [11] Zhang L J, Jia Y, Jing M Y, Guo L P, Zhang Hao, Xiao L T and Jia S T 2019 Laser Phys. 29 035701 [12] Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S and Shi B S 2022 Phys. Rev. Appl. 18 014045 [13] Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M and Jia S T 2022 Appl. Phys. Lett. 121 014002 [14] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104 [15] Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S and Weatherill K J 2020 Phys. Rev. X 10 011027 [16] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F and Zhong Z P 2021 Phys. Rev. A 103 063113 [17] Simons M T, Gordon J A and Holloway C L 2018 Appl Opt. 57 6456 [18] Liu W X, Zhang L J and Wang T 2023 Chin. Phys. B 32 053203 [19] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030 [20] Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C and Zhao J M 2020 Chin. Phys. B 29 033201 [21] Sedlacek J A, Schwettmann A, Kubler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001 [22] Song Z F, Zhang W F, Wu Q, Mu H H, Liu X C, Zhang L J and Qu J F 2018 Sensors 18 3205 [23] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas Wireless Propag. Lett. 18 1853 [24] Simons M T, Haddab A H, Gordon J A, Novotny D and Holloway C L 2019 IEEE Access 7 164975 [25] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030 [26] Deb A B and Kjrgaard N 2018 Appl. Phys. Lett. 112 211106 [27] Tretiakov A, Potts C A, Lee T S, Thiessen M J, Davis J P and LeBlanc L J 2020 Appl. Phys. Lett. 116 164101 [28] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F and Wang Q L 2020 Appl. Sci. 10 1346 [29] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 International Symposium on Electromagnetic Compatibility, September 2–6, 2019, Barcelona, Spain, p. 885 [30] Song Z F, ZhangWF, Liu X C, Zou H Y, Zhang J, Jiang Z Y and Qu J F 2018 IEEE Globecom Workshops, December 9–13, 2018, Abu Dhabi, United Arab Emirates, p. 1 [31] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J and Qu J F 2019 Opt. Express 27 8848 [32] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antenna Propag. 69 2455 [33] Li H Q, Hu J L, Bai J X, Shi M, Jiao Y C, Zhao J M and Jia S T 2022 Opt. Express 30 13522 [34] Yang K, Mao R Q, He L, Yao J W, Li J B, Sun Z S and Fu Y Q 2023 EPJ Quantum Technol. 10 23 [35] Wu B, Zhou Y L, Ding Z K, Mao R Q, Qian S X, Wan Z Q, Liu Y, An Q, Lin Y and Fu Y Q 2024 EPJ Quantum Technol. 11 30 [36] Fan H Q, Kumar S, Daschner R, Kubler H and Shaffer J P 2014 Opt. Lett. 39 3030 [37] Li S H, Yuan J P and Wang L R 2020 Appl. Sci. 10 8110 [38] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F and Zhong Z P 2021 AIP Adv. 11 085127 [39] Li S H, Yuan J P, Wang L R, Xiao L T and Jia S T 2022 Front. Phys. 10 846687 [40] Holloway C T, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alù A and Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001 [41] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101 [42] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819 [43] Cai M H, You S H, Zhang S S, Xu Z S and Liu H P 2023 Appl. Phys. Lett. 122 161103 [44] McGloin D, Dunn M H and Fulton D J 2000 Phys. Rev. A 62 053802 [45] Chen Y C, Lin C W and Yu I A 2000 Phys. Rev. A 61 053805 [46] Fan H Q, Kumar S, Kübler H and Shaffer J P 2016 J. Phys. B: At. Mol. Opt. Phys. 49 104004 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|