Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 083201    DOI: 10.1088/1674-1056/add005
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Polarization impact on sensitivity of Rydberg atom-based microwave sensors

Minghao Cai(蔡明皓)1,2, Aomao Wei(魏奥贸)1, Shanshan Chen(陈珊珊)1, and Yuming Huang(黄聿铭)1,†
1 College of Photoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Chongqing Integrated Circuit Collaborative Innovation Center, Chongqing 401332, China
Abstract  We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator (LO) microwave field strength. By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup, we study the Autler-Townes (AT) splitting spectrum and optical response of probe transmission, and analyze their sensing effects. The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration. We achieve a sensitivity of 4.150(69) $\mathrm{nV}\cdot {\mathrm{cm}}^{-1}\cdot {\mathrm{Hz}}^{-1/2}$ at an LO microwave field strength of 1.74 mV/cm. This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors.
Keywords:  Rydberg atom      microwave sensing      polarization configuration      sensitivity  
Received:  19 December 2024      Revised:  25 March 2025      Accepted manuscript online:  24 April 2025
PACS:  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
Fund: Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2024NSCQMSX0880 and CSTB2024NSCQ-MSX1187) and the Fund from Chongqing University of Posts and Telecommunications (Grants Nos. A2024-33 and A2023-54).
Corresponding Authors:  Yuming Huang     E-mail:  huangym@cqupt.edu.cn

Cite this article: 

Minghao Cai(蔡明皓), Aomao Wei(魏奥贸), Shanshan Chen(陈珊珊), and Yuming Huang(黄聿铭) Polarization impact on sensitivity of Rydberg atom-based microwave sensors 2025 Chin. Phys. B 34 083201

[1] Yuan S X, Jing M Y, Zhang H, Zhang L J, Xiao L T and Jia S T 2024 Opt. Express 32 8378
[2] Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M and Jia S T 2023 Opt. Express 31 29228
[3] Borówka S, Pylypenko U, MazelanikMand Parniak M 2023 Nat. Photonics 18 32
[4] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[5] Fan H Q, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B 48 202001
[6] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T and Jia S T 2020 Nat. Phys. 16 911
[7] Prajapati N, Robinson A K, Berweger S, SimonsMT, Artusio-Glimpse A B and Holloway C L 2021 Appl. Phys. Lett. 119 214001
[8] Meyer D H, Hill J C, Kunz P D and Cox K C 2023 Phys. Rev. Appl. 19 014025
[9] Gallagher T F 1994 Rydberg Atom (Cambridge: Cambridge University Press)
[10] Holloway C L, Simons M T, Abdulaziz H, Gordon J A, Anderson D A, Raithel G and Voran S 2021 IEEE Antenna Propag. Mag. 63 63
[11] Zhang L J, Jia Y, Jing M Y, Guo L P, Zhang Hao, Xiao L T and Jia S T 2019 Laser Phys. 29 035701
[12] Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S and Shi B S 2022 Phys. Rev. Appl. 18 014045
[13] Hu J L, Li H Q, Song R, Bai J X, Jiao Y C, Zhao J M and Jia S T 2022 Appl. Phys. Lett. 121 014002
[14] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104
[15] Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S and Weatherill K J 2020 Phys. Rev. X 10 011027
[16] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F and Zhong Z P 2021 Phys. Rev. A 103 063113
[17] Simons M T, Gordon J A and Holloway C L 2018 Appl Opt. 57 6456
[18] Liu W X, Zhang L J and Wang T 2023 Chin. Phys. B 32 053203
[19] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030
[20] Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C and Zhao J M 2020 Chin. Phys. B 29 033201
[21] Sedlacek J A, Schwettmann A, Kubler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[22] Song Z F, Zhang W F, Wu Q, Mu H H, Liu X C, Zhang L J and Qu J F 2018 Sensors 18 3205
[23] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas Wireless Propag. Lett. 18 1853
[24] Simons M T, Haddab A H, Gordon J A, Novotny D and Holloway C L 2019 IEEE Access 7 164975
[25] Gordon J A, Simons M T, Haddab A H and Holloway C L 2019 AIP Adv. 9 045030
[26] Deb A B and Kjrgaard N 2018 Appl. Phys. Lett. 112 211106
[27] Tretiakov A, Potts C A, Lee T S, Thiessen M J, Davis J P and LeBlanc L J 2020 Appl. Phys. Lett. 116 164101
[28] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F and Wang Q L 2020 Appl. Sci. 10 1346
[29] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 International Symposium on Electromagnetic Compatibility, September 2–6, 2019, Barcelona, Spain, p. 885
[30] Song Z F, ZhangWF, Liu X C, Zou H Y, Zhang J, Jiang Z Y and Qu J F 2018 IEEE Globecom Workshops, December 9–13, 2018, Abu Dhabi, United Arab Emirates, p. 1
[31] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J and Qu J F 2019 Opt. Express 27 8848
[32] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antenna Propag. 69 2455
[33] Li H Q, Hu J L, Bai J X, Shi M, Jiao Y C, Zhao J M and Jia S T 2022 Opt. Express 30 13522
[34] Yang K, Mao R Q, He L, Yao J W, Li J B, Sun Z S and Fu Y Q 2023 EPJ Quantum Technol. 10 23
[35] Wu B, Zhou Y L, Ding Z K, Mao R Q, Qian S X, Wan Z Q, Liu Y, An Q, Lin Y and Fu Y Q 2024 EPJ Quantum Technol. 11 30
[36] Fan H Q, Kumar S, Daschner R, Kubler H and Shaffer J P 2014 Opt. Lett. 39 3030
[37] Li S H, Yuan J P and Wang L R 2020 Appl. Sci. 10 8110
[38] Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F and Zhong Z P 2021 AIP Adv. 11 085127
[39] Li S H, Yuan J P, Wang L R, Xiao L T and Jia S T 2022 Front. Phys. 10 846687
[40] Holloway C T, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alù A and Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001
[41] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101
[42] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[43] Cai M H, You S H, Zhang S S, Xu Z S and Liu H P 2023 Appl. Phys. Lett. 122 161103
[44] McGloin D, Dunn M H and Fulton D J 2000 Phys. Rev. A 62 053802
[45] Chen Y C, Lin C W and Yu I A 2000 Phys. Rev. A 61 053805
[46] Fan H Q, Kumar S, Kübler H and Shaffer J P 2016 J. Phys. B: At. Mol. Opt. Phys. 49 104004
[1] Correlated Rydberg electromagnetically induced transparencys
Lei Huang(黄磊), Peng-Fei Wang(王鹏斐), Han-Xiao Zhang(张焓笑), Yu Zhu(朱瑜), Hong Yang(杨红), and Dong Yan(严冬). Chin. Phys. B, 2025, 34(6): 064201.
[2] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[3] Optimization strategies for operational parameters of Rydberg atom-based amplitude modulation receiver
Yuhao Wu(吴宇豪), Dongping Xiao(肖冬萍), Huaiqing Zhang(张淮清), and Sheng Yan(阎晟). Chin. Phys. B, 2025, 34(1): 013201.
[4] Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms
Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东). Chin. Phys. B, 2024, 33(6): 064203.
[5] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[6] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[7] Superradiance of ultracold cesium Rydberg |65D5/2> → |66P3/2>
Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明). Chin. Phys. B, 2024, 33(5): 054204.
[8] Extending microwave-frequency electric-field detection through single transmission peak method
ing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞). Chin. Phys. B, 2024, 33(5): 054203.
[9] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起). Chin. Phys. B, 2024, 33(2): 024205.
[10] Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy
Yuan-Yuan Wu(吴圆圆), Yun-Hui He(何云辉), Yue-Chun Jiao(焦月春), and Jian-Ming Zhao(赵建明). Chin. Phys. B, 2024, 33(11): 113201.
[11] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[12] Phase sensitivity with a coherent beam and twin beams via intensity difference detection
Jun Liu(刘俊), Tao Shao(邵涛), Chenlu Li(李晨露), Minyang Zhang(张敏洋), Youyou Hu(胡友友), Dongxu Chen(陈东旭), and Dong Wei(卫栋). Chin. Phys. B, 2024, 33(1): 014203.
[13] Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light
Jian Zhou(周建), Changgui Gu(顾长贵), Yuxuan Song(宋雨轩), and Yan Xu(许艳). Chin. Phys. B, 2023, 32(9): 098701.
[14] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
[15] A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(5): 053201.
No Suggested Reading articles found!