Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 060203    DOI: 10.1088/1674-1056/adc082
GENERAL Prev   Next  

Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks

Xiongding Liu(柳雄顶)1, Xiaodan Zhao(赵晓丹)1,†, Xiaojing Zhong(钟晓静)2, and Wu Wei(魏武)3
1 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
2 School of Mechanical and Electronic Information Engineering, Guangzhou University, Guangzhou 510006, China;
3 School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
Abstract  This paper investigates a new SEIQR (susceptible-exposed-infected-quarantined-recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh-Hurwitz criterion, Lyapunov method and LaSalle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate ($\gamma_{1},\gamma_{2}$), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
Keywords:  epidemic spreading      SEIQR model      stability and sensitivity analysis      heterogeneous complex networks      optimal control  
Received:  30 October 2024      Revised:  08 February 2025      Accepted manuscript online:  14 March 2025
PACS:  02.50.Fz (Stochastic analysis)  
  02.40.Vh (Global analysis and analysis on manifolds)  
  02.30.-f (Function theory, analysis)  
Fund: Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011), the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391), the National Natural Science Foundation of China (Grant No. 61573148), and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001).
Corresponding Authors:  Xiaodan Zhao     E-mail:  xdzhao@hdu.edu.cn

Cite this article: 

Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武) Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks 2025 Chin. Phys. B 34 060203

[1] Zhu N, Zhang D, Wang W, et al. 2020 New England Journal Medicine 382 727
[2] Wang C, Horby P, Hayden F and Gao G 2020 Lancet 395 470
[3] Zhu Y, Shen R, Dong H and Wang W 2024 Chin. Phys. B 33 058301
[4] Huang S, Chen J, Li M, Xu Y and Hu M 2024 Chin. Phys. B 33 030205
[5] Zhang J and Sun J 2014 Physica A 394 24
[6] Li T, Liu X, Wu J, Wan C, Guan Z H and Wang Y 2016 Physica A 450 649
[7] Liu Z and Tian C 2020 Journal of Differential Equations 269 10995
[8] Cai Y, Kang Y and Wang W. 2017 Appl. Math. Comput. 305 221
[9] Zhu G, Fu X and Chen G 2012 Appl. Math. Model. 36 5808
[10] Liu L, Wang J and Liu X 2015 Nonlinear Analysis: Real World Applications 24 18
[11] Feng Y, Ding L, Huang Y and Guan Z H 2016 Chin. Phys. B 25 128903
[12] Liu X, Li T, Xu H and Liu W 2019 Physica A 514 497
[13] Li T, Wang Y and Guan Z H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 686
[14] Li K, Zhu G, Ma Z and Chen L 2019 Commun. Nonlinear Sci. Numer. Simul. 66 84
[15] Li R, Song Y and Jiang G P 2021 Chin. Phys. B 30 120202
[16] Wells P M, Doores K J, Couvreur S, et al. 2020 Journal of Infection 81 931
[17] Nian F, Yang X and Shi Y 2024 Chin. Phys. B 33 018904
[18] Bagal D K, Rath A, Barua A and Patnaik D 2020 Chaos, Solitons and Fractals 140 110154
[19] Kudryashov N A, Chmykhov M A and Vigdorowitsch M 2021 Appl. Math. Model. 90 466
[20] Lee C, Li Y and Kim J 2020 Chaos, Solitons and Fractals 139 110090
[21] Sun Z, Zhang H, Yang Y,Wan H andWang Y 2020 Science of the Total Environment 746 141347
[22] Banerjee A, Pasea L, Harris S, et al. 2020 Lancet 395 1715
[23] Mandal M, Jana S, Nandi S K, Khatua A, Adak S and KarM T K 2020 Chaos, Solitons and Fractals 136 109889
[24] Zheng N, Du S, Wang J, et al. 2020 IEEE Transactions on Cybernetics 50 2891
[25] Mahajan A, Sivadas N and Solanki R 2020 Chaos, Solitons and Fractals 140 110156
[26] Liu J, Wang L, Zhang Q and Yau S 2021 Appl. Math. Model. 89 1965
[27] Rafiq M, Macas-Daz J, Raza A and Ahmed N 2021 Appl. Math. Model. 89 1835
[28] Liu C, Yang Y, Chen B, Cui T, Shang F, Fan J and Li R 2022 Chaos 32 081105
[29] Shi D, Shang F, Chen B, Expert P, Lv L, Eugene Stanley H, Lambiotte R, Evans Tim S and Li R 2024 Commun. Phys. 7 170
[30] Li R, Richmond P and Roehner B M 2018 Physica A 510 713
[31] Yu Y and Huo L 2025 Information Sciences 689 121414
[32] Huo L, Pan M and Wei Y 2024 Chaos, Solitons and Fractals 186 115198
[33] Xie X and Huo L 2024 Physica A 647 129928
[34] Luo X, Jiang H, Chen S and Li J 2023 Chin. Phys. B 32 058702
[35] Ma J, Xiang T and Zhao Y 2024 Int. J. Mod. Phys. C 35 2450023
[36] Zhang Y, Li S, Li X and Ma J 2023 Int. J. Mod. Phys. C 34 2350144
[37] Peng X, Li C, Qi H, Sun G,Wang Z andWu Y 2022 Appl. Math. Comput. 420 126875
[38] Li H, Xu W, Song S, Wang W X and Perc M 2021 Chaos, Solitons and Fractals 151 111294
[39] Guo H, Yin Q, Xia C and Dehmer M 2021 Nonlinear Dyn. 105 3819
[40] Han D and Wang X 2024 Chaos, Solitons and Fractals 186 115264
[41] Jia M, Li X and Li D 2021 Physica A 579 126119
[42] Hou Y, Lu Y, Dong Y, Jin L and Shi L 2023 Appl. Math. Comput. 446 127850
[43] Chen J, Cao J, Li M and Hu M 2022 Chaos 32 083141
[44] Wang J and Dun H 2023 Physica A 619 128722
[45] Rizi A, Faqeeh A, Badie-Modiri A and Kivela M 2022 Phys. Rev. E 105 044313
[46] Liu Y, Ding L, An X, Hu P and Du F 2020 Physica A 537 122775
[47] Perez I A, Trunfio P A, Rocca C E La and Braunstein L A 2020 Physica A 545 123709
[48] Wang D, Small M and Zhao Y 2020 Physica A 564 125535
[49] Kumar A, Srivastava P K, Dong Y and Takeuchi Y 2020 Physica A 542 123196
[50] Mahajan A, Sivadas N A and Solanki R 2020 Chaos, Solitons and Fractals 140 110156
[51] Mandal M, Jana S, Nandi S K, Khatua A, Adak S and Kar T K 2020 Chaos, Solitons and Fractals 136 109889
[52] Singh R K, Drews M, De La Sen M, Kumar M, Singh S S and Pandey A K 2020 IEEE Access 8 186932
[53] Hazarika B B and Gupta D 2020 Appl. Soft Comput. 96 106626
[54] Din Rud, Seadawy AR, Shah K, Ullah A and Baleanu D 2020 Results in Physics 19 103468
[1] Influence of negative information dissemination and vaccination behavioral decision-making on epidemic spreading in a three-layer network
Liang’an Huo(霍良安) and Leyao Yin(尹乐瑶). Chin. Phys. B, 2025, 34(6): 068902.
[2] Vital nodes identification method integrating degree centrality and cycle ratio
Yu Zhao(赵玉) and Bo Yang(杨波). Chin. Phys. B, 2025, 34(3): 038901.
[3] Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading
Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜). Chin. Phys. B, 2024, 33(5): 058301.
[4] Optimal and robust control of population transfer in asymmetric quantum-dot molecules
Yu Guo(郭裕), Songshan Ma(马松山), and Chuan-Cun Shu(束传存). Chin. Phys. B, 2024, 33(2): 024203.
[5] Impact of environmental factors on the coevolution of information-emotions-epidemic dynamics in activity-driven multiplex networks
Liang'an Huo(霍良安), Bingjie Liu(刘炳杰), and Xiaomin Zhao(赵晓敏). Chin. Phys. B, 2024, 33(12): 128903.
[6] Intervention against information diffusion in static and temporal coupling networks
Yun Chai(柴允), You-Guo Wang(王友国), Jun Yan(颜俊), and Xian-Li Sun(孙先莉). Chin. Phys. B, 2023, 32(9): 090202.
[7] Stability and optimal control for delayed rumor-spreading model with nonlinear incidence over heterogeneous networks
Xupeng Luo(罗续鹏), Haijun Jiang(蒋海军), Shanshan Chen(陈珊珊), and Jiarong Li(李佳容). Chin. Phys. B, 2023, 32(5): 058702.
[8] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[9] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[10] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[11] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[12] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[13] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[14] Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu Wu(吴大宇), Yanping Zhao(赵艳萍), Muhua Zheng(郑木华), Jie Zhou(周杰), Zonghua Liu(刘宗华). Chin. Phys. B, 2016, 25(2): 028701.
[15] Epidemic spreading on random surfer networks with infected avoidance strategy
Yun Feng(冯运), Li Ding(丁李), Yun-Han Huang(黄蕴涵), Zhi-Hong Guan(关治洪). Chin. Phys. B, 2016, 25(12): 128903.
No Suggested Reading articles found!