ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals |
Tian Xue(薛天)1, Yu-Bo Li(李宇博)1, Hao-Yuan Song(宋浩元)1, Xiang-Guang Wang(王相光)1, Qiang Zhang(张强)1, Shu-Fang Fu(付淑芳)1,†, Sheng Zhou(周胜)2,‡, and Xuan-Zhang Wang(王选章)1 |
1 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; 2 Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China |
|
|
Abstract We conduct a theoretical analysis of the massive and tunable Goos—Hänchen (GH) shift on a polar crystal covered with periodical black phosphorus (BP)-patches in the THz range. The surface plasmon phonon polaritons (SPPPs), which are coupled by the surface phonon polaritons (SPhPs) and surface plasmon polaritons (SPPs), can greatly increase GH shifts. Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about -7565.58 λ0 is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43×108 λ0/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications.
|
Received: 04 April 2023
Revised: 30 May 2023
Accepted manuscript online: 02 June 2023
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020A014) and the Graduate Students’ Research Innovation Project of Harbin Normal University (Grant No. HSDSSCX2022-47). |
Corresponding Authors:
Shu-Fang Fu, Sheng Zhou
E-mail: shufangfu1975@163.com;zhousheng_wl@126.com
|
Cite this article:
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章) Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals 2024 Chin. Phys. B 33 014207
|
[1] Goos F and Hanchen H 1947 Ann. Phys. 436 333 [2] Fedorov F I 1955 Dokl. Akad. Nauk SSSR 105 465 [3] Artmann K 1948 Annalen der Physik 437 87 [4] Zhou X, Cheng W B, Liu S, Zhang J Q, Yang C F and Luo Z M 2021 Opt. Commun. 483 126655 [5] Ling X, Zhang Z, Chen S Z, Zhou X X and Luo H L 2021 J. Phys. D:Appl. Phys. 55 133001 [6] Merano M, Aiello A and Van Exter M P, Eliel E R and Woerdman J P 2007 Opt. Express 15 15928 [7] Liu F, Xu J P, Song G and Yang Y P 2013 J. Opt. Soc. Am. B 30 1167 [8] Ye G Z, Zhang W S, Wu W J, Chen S Z, Shu W X, Luo H L and Wen S C 2019 Phys. Rev. A 99 023807 [9] Ali K, Syed A A, Waseer W I and Naqvi Q A 2021 Optik. 243 167501 [10] Song H Y, Fu S F, Zhang Q, Zhou S and Wang X Z 2021 Opt. Express 29 19068 [11] Li G, Luican A, Lopes dos Santos J M B, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109 [12] Petrov N I, Danilov V A, Popov V V and Usievich B A 2020 Opt. Express 28 7552 [13] Wu F, Luo M, Wu J J, Fan C, Qi X, Jian Y R, Liu D J, Xiao S Y, Chen G Y, Jiang H T, Sun Y and Chen H 2021 Phy. Rev. A 104 023518 [14] Wu F, Wu J J, Guo Z W, Jiang, H T, Sun Y, Li Y H, Ren J and Chen H 2019 Phy. Rev. Appl. 12 014028 [15] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone A and Cory R D 2018 Science 361 690 [16] Tatjana G and Ortwin H 2017 Opt. Express 25 11466 [17] Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414 [18] Wang J, Jiang Y and Hu Z 2017 Opt. Express 25 22149 [19] Amin M, Farhat M and Baǧci H 2013 Opt. Express 21 29938 [20] Liang L, Wang J, Lin W L, Sumpter B G, Meunier V and Pan M H 2014 Nano Lett. 14 6400 [21] Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Alberto G. Curto, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Harold Y H and Cui Y 2015 Nat. Nanotechnol. 10 707 [22] Li Y B, Song H Y, Zhang Y Q, Zhou S, Fu S F, Zhang Q and Wang X Z 2023 Opt. Laser Technol. 159 108968 [23] Zhang W S, Wang Y S, Chen S Z, Wen S C and Luo H L 2022 Phys. Rev. A 105 043507 [24] Guo T, Jin B and Argyropoulos C 2019 Phys. Rev. Appl. 11 024050 [25] Mitra S S and Massa N E 1982 Band Theory and Transport Properties (Vol. I) (North-Holland) pp:81-192 [26] Caldwell J D, Lindsay L, Giannini V, Vurgaftman I, Reinecke T L, Maier S A and Glembocki O J 2015 Nanophotonics 4 44 [27] Wang T, Li P, Hauer B, Chigrin D N and Taubner T 2013 Nano Lett. 13 5051 [28] Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y and Fan D 2016 IEEE Photonics J. 8 1 [29] Pourhassan H, Safari E, Reza T M and Aghanejad A 2022 Opt. Laser Technol. 148 107756 [30] Li Z, Zhang Y, Guo X W, Tong C H, Chen X Y, Zeng Y, Shen J and Li C Y 2023 Opt. Express 31 3520 [31] You Q, Shan Y, Gan S W, Zhao Y T, Dai X Y and Xiang Y J 2018 Opt. Mater. Express 8 3036 [32] Liu Z, Lu F, Jiang L, Lin Y and Zhang Z W 2021 Biosensors 11 201 [33] Zhou X, Liu S, Ding Y, Li M and Luo Z M 2019 Carbon 149 604 [34] Wu S Q, Song H Y, Li Y B, Fu S F and Wang X Z 2022 Results Phys. 35 105383 [35] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172 [36] Nemilentsau A, Low T and Hanson G 2016 Phys. Rev. Lett. 116 066804 [37] Gan C H 2012 Appl. Phys. Lett. 101 111609 [38] Zhang Q, Zhou S, Fu S F and Wang X Z 2019 J. Opt. Soc. Am. B 36 1429 [39] Guo T and Argyropoulos C 2019 J. Opt. Soc. Am. B 36 2962 [40] Ramaccia D, Toscano A and Bilotti F 2011 Prog. Electromagn. Res. M 21 1 [41] Mishra V, Costa F and Monorchio A 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting 903-904 [42] Zheng Z, Lu F, Jiang L, Jin X L, Dai X Y and Xiang Y J 2019 Opt. Commun. 452 227 [43] Mitra S S and Massa N E 1982 Handbook on Semiconductors (Ch. 3) (North-Holland:Paul W, Amsterdam) [44] Zhang W., Wu W J, Chen S Z, Zhang J, Ling X H, Shu W X, Luo H L and Wen S C 2018 Photon. Res. 6 511 [45] Smith J B, Hagaman D and Ji H F 2016 Nanotechnology 27 215602 [46] Hu Z H, Niu T C, Guo R, Zhang J L, Lai M, He J, Wang L and Chen W 2018 Nanoscale 10 21575 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|