Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014207    DOI: 10.1088/1674-1056/acdac2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals

Tian Xue(薛天)1, Yu-Bo Li(李宇博)1, Hao-Yuan Song(宋浩元)1, Xiang-Guang Wang(王相光)1, Qiang Zhang(张强)1, Shu-Fang Fu(付淑芳)1,†, Sheng Zhou(周胜)2,‡, and Xuan-Zhang Wang(王选章)1
1 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
2 Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China
Abstract  We conduct a theoretical analysis of the massive and tunable Goos—Hänchen (GH) shift on a polar crystal covered with periodical black phosphorus (BP)-patches in the THz range. The surface plasmon phonon polaritons (SPPPs), which are coupled by the surface phonon polaritons (SPhPs) and surface plasmon polaritons (SPPs), can greatly increase GH shifts. Based on the in-plane anisotropy of BP, two typical metasurface models are designed and investigated. An enormous GH shift of about -7565.58 λ0 is achieved by adjusting the physical parameters of the BP-patches. In the designed metasurface structure, the maximum sensitivity accompanying large GH shifts can reach about 6.43×108 λ0/RIU, which is extremely sensitive to the size, carrier density, and layer number of BP. Compared with a traditional surface plasmon resonance sensor, the sensitivity is increased by at least two orders of magnitude. We believe that investigating metasurface-based SPPPs sensors could lead to high-sensitivity biochemical detection applications.
Keywords:  Goos—Hänchen shift      black phosphorus      surface plasmon phonon polaritons      sensitivity      metasurfaces  
Received:  04 April 2023      Revised:  30 May 2023      Accepted manuscript online:  02 June 2023
PACS:  42.65.-k (Nonlinear optics)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  77.22.Ch (Permittivity (dielectric function))  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020A014) and the Graduate Students’ Research Innovation Project of Harbin Normal University (Grant No. HSDSSCX2022-47).
Corresponding Authors:  Shu-Fang Fu, Sheng Zhou     E-mail:  shufangfu1975@163.com;zhousheng_wl@126.com

Cite this article: 

Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章) Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals 2024 Chin. Phys. B 33 014207

[1] Goos F and Hanchen H 1947 Ann. Phys. 436 333
[2] Fedorov F I 1955 Dokl. Akad. Nauk SSSR 105 465
[3] Artmann K 1948 Annalen der Physik 437 87
[4] Zhou X, Cheng W B, Liu S, Zhang J Q, Yang C F and Luo Z M 2021 Opt. Commun. 483 126655
[5] Ling X, Zhang Z, Chen S Z, Zhou X X and Luo H L 2021 J. Phys. D:Appl. Phys. 55 133001
[6] Merano M, Aiello A and Van Exter M P, Eliel E R and Woerdman J P 2007 Opt. Express 15 15928
[7] Liu F, Xu J P, Song G and Yang Y P 2013 J. Opt. Soc. Am. B 30 1167
[8] Ye G Z, Zhang W S, Wu W J, Chen S Z, Shu W X, Luo H L and Wen S C 2019 Phys. Rev. A 99 023807
[9] Ali K, Syed A A, Waseer W I and Naqvi Q A 2021 Optik. 243 167501
[10] Song H Y, Fu S F, Zhang Q, Zhou S and Wang X Z 2021 Opt. Express 29 19068
[11] Li G, Luican A, Lopes dos Santos J M B, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
[12] Petrov N I, Danilov V A, Popov V V and Usievich B A 2020 Opt. Express 28 7552
[13] Wu F, Luo M, Wu J J, Fan C, Qi X, Jian Y R, Liu D J, Xiao S Y, Chen G Y, Jiang H T, Sun Y and Chen H 2021 Phy. Rev. A 104 023518
[14] Wu F, Wu J J, Guo Z W, Jiang, H T, Sun Y, Li Y H, Ren J and Chen H 2019 Phy. Rev. Appl. 12 014028
[15] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone A and Cory R D 2018 Science 361 690
[16] Tatjana G and Ortwin H 2017 Opt. Express 25 11466
[17] Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414
[18] Wang J, Jiang Y and Hu Z 2017 Opt. Express 25 22149
[19] Amin M, Farhat M and Baǧci H 2013 Opt. Express 21 29938
[20] Liang L, Wang J, Lin W L, Sumpter B G, Meunier V and Pan M H 2014 Nano Lett. 14 6400
[21] Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Alberto G. Curto, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Harold Y H and Cui Y 2015 Nat. Nanotechnol. 10 707
[22] Li Y B, Song H Y, Zhang Y Q, Zhou S, Fu S F, Zhang Q and Wang X Z 2023 Opt. Laser Technol. 159 108968
[23] Zhang W S, Wang Y S, Chen S Z, Wen S C and Luo H L 2022 Phys. Rev. A 105 043507
[24] Guo T, Jin B and Argyropoulos C 2019 Phys. Rev. Appl. 11 024050
[25] Mitra S S and Massa N E 1982 Band Theory and Transport Properties (Vol. I) (North-Holland) pp:81-192
[26] Caldwell J D, Lindsay L, Giannini V, Vurgaftman I, Reinecke T L, Maier S A and Glembocki O J 2015 Nanophotonics 4 44
[27] Wang T, Li P, Hauer B, Chigrin D N and Taubner T 2013 Nano Lett. 13 5051
[28] Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y and Fan D 2016 IEEE Photonics J. 8 1
[29] Pourhassan H, Safari E, Reza T M and Aghanejad A 2022 Opt. Laser Technol. 148 107756
[30] Li Z, Zhang Y, Guo X W, Tong C H, Chen X Y, Zeng Y, Shen J and Li C Y 2023 Opt. Express 31 3520
[31] You Q, Shan Y, Gan S W, Zhao Y T, Dai X Y and Xiang Y J 2018 Opt. Mater. Express 8 3036
[32] Liu Z, Lu F, Jiang L, Lin Y and Zhang Z W 2021 Biosensors 11 201
[33] Zhou X, Liu S, Ding Y, Li M and Luo Z M 2019 Carbon 149 604
[34] Wu S Q, Song H Y, Li Y B, Fu S F and Wang X Z 2022 Results Phys. 35 105383
[35] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
[36] Nemilentsau A, Low T and Hanson G 2016 Phys. Rev. Lett. 116 066804
[37] Gan C H 2012 Appl. Phys. Lett. 101 111609
[38] Zhang Q, Zhou S, Fu S F and Wang X Z 2019 J. Opt. Soc. Am. B 36 1429
[39] Guo T and Argyropoulos C 2019 J. Opt. Soc. Am. B 36 2962
[40] Ramaccia D, Toscano A and Bilotti F 2011 Prog. Electromagn. Res. M 21 1
[41] Mishra V, Costa F and Monorchio A 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting 903-904
[42] Zheng Z, Lu F, Jiang L, Jin X L, Dai X Y and Xiang Y J 2019 Opt. Commun. 452 227
[43] Mitra S S and Massa N E 1982 Handbook on Semiconductors (Ch. 3) (North-Holland:Paul W, Amsterdam)
[44] Zhang W., Wu W J, Chen S Z, Zhang J, Ling X H, Shu W X, Luo H L and Wen S C 2018 Photon. Res. 6 511
[45] Smith J B, Hagaman D and Ji H F 2016 Nanotechnology 27 215602
[46] Hu Z H, Niu T C, Guo R, Zhang J L, Lai M, He J, Wang L and Chen W 2018 Nanoscale 10 21575
[1] Phase sensitivity with a coherent beam and twin beams via intensity difference detection
Jun Liu(刘俊), Tao Shao(邵涛), Chenlu Li(李晨露), Minyang Zhang(张敏洋), Youyou Hu(胡友友), Dongxu Chen(陈东旭), and Dong Wei(卫栋). Chin. Phys. B, 2024, 33(1): 014203.
[2] Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light
Jian Zhou(周建), Changgui Gu(顾长贵), Yuxuan Song(宋雨轩), and Yan Xu(许艳). Chin. Phys. B, 2023, 32(9): 098701.
[3] A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(5): 053201.
[4] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[5] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[6] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[7] Effect of short-term plasticity on working memory
Fan Yang(杨帆) and Feng Liu(刘锋). Chin. Phys. B, 2023, 32(11): 118706.
[8] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[9] Measurement of the relative neutron sensitivity curve of a LaBr3(Ce) scintillator based on the CSNS Back-n white neutron source
Jian Liu(刘建), Dongming Wang(王东明), Yuecheng Fu(甫跃成), Zhongbao Li(李忠宝), Han Yi(易晗), and Longtao Yi(易龙涛). Chin. Phys. B, 2023, 32(10): 100703.
[10] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[11] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Plasmonic sensor with self-reference capability based on functional layer film composed of Au/Si gratings
Jiankai Zhu(朱剑凯), Xiangxian Wang(王向贤), Yunping Qi(祁云平), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(1): 014206.
[14] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[15] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
No Suggested Reading articles found!