INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light |
Jian Zhou(周建), Changgui Gu(顾长贵)†, Yuxuan Song(宋雨轩), and Yan Xu(许艳) |
Business School, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
|
Abstract Exposed to the natural light-dark cycle, 24 h rhythms exist in behavioral and physiological processes of living beings. Interestingly, under constant darkness or constant light, living beings can maintain a robust endogenous rhythm with a free running period (FRP) close to 24 h. In mammals, the circadian rhythm is coordinated by a master clock located in the suprachiasmatic nucleus (SCN) of the brain, which is composed of about twenty thousand self-oscillating neurons. These SCN neurons form a heterogenous network to output a robust rhythm. Thus far, the exact network topology of the SCN neurons is unknown. In this article, we examine the effect of the SCN network structure on the FRP when exposed to constant light by a Poincaré model. Four typical network structures are considered, including a nearest-neighbor coupled network, a Newman-Watts small world network, an Erdös-Rényi random network and a Barabási-Albert (BA) scale free network. The results show that the FRP is longest in the BA network, because the BA network is characterized by the most heterogeneous structure among these four types of networks. These findings are not affected by the average node degree of the SCN network or the value of relaxation rate of the SCN neuronal oscillators. Our findings contribute to the understanding of how the network structure of the SCN neurons influences the FRP.
|
Received: 26 February 2023
Revised: 16 April 2023
Accepted manuscript online: 23 May 2023
|
PACS:
|
87.18.Yt
|
(Circadian rhythms)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
87.18.Sn
|
(Neural networks and synaptic communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275179 and 11875042) and the Natural Science Foundation of Shanghai (Grant No. 21ZR1443900). |
Corresponding Authors:
Changgui Gu
E-mail: gu_changgui@163.com
|
Cite this article:
Jian Zhou(周建), Changgui Gu(顾长贵), Yuxuan Song(宋雨轩), and Yan Xu(许艳) Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light 2023 Chin. Phys. B 32 098701
|
[1] Welsh D K, Takahashi J S and Kay S A 2010 Annu. Rev. Physiol. 72 551 [2] Refinetti R 2019 Circadian physiology (Florida: CRC press) [3] Gu C, Li J, Zhou J, Yang H and Rohling J 2021 Front. Physiol. 12 678391 [4] Smyllie N J, Bagnall J, Koch A A, Niranjan D, Polidarova L, Chesham J E, Chin J W, Partch C L, Loudon A S and Hastings M H 2022 Proc. Natl. Acad. Sci. USA 119 e2113845119 [5] Czeisler C A, Duffy J F, Shanahan T L, Brown E N, Mitchell J F, Rimmer D W, Ronda J M, Silva E J, Allan J S, Emens J S, Dijk D J and Kronauer R E 1999 Science 284 2177 [6] Gu C, Rohling J H, Liang X and Yang H 2016 Phys. Rev. E 93 032414 [7] Srivastava M, Varma V, Abhilash L, Sharma V K and Sheeba V 2019 J. Biol. Rhythms 34 231 [8] Aschoff J 1960 Cold Spring Harbor Symp. Quant. Biol. 25 11 [9] Gu C, Zhang X and Liu Z 2014 Chin. Phys. B 23 078702 [10] Vijaya Shankara J, Horsley K G, Cheng N, Rho J M and Antle M C 2022 J. Biol. Rhythms 37 498 [11] Witting W, Mirmiran M, Bos N P and Swaab D F 1994 Chronobiol. Int. 11 103 [12] Kuhlman S J, Craig L M and Duffy J F 2018 Cold Spring Harbor Perspect. Biol. 10 a033613 [13] Nassan M and Videnovic A 2022 Nat. Rev. Neurol. 18 7 [14] Maejima T, Tsuno Y, Miyazaki S, et al. 2021 Proc. Natl. Acad. Sci. USA 118 e2010168118 [15] Bernard S, Gonze D, Čajavec B, Herzel H and Kramer A 2007 PLoS Comput. Biol. 3 e68 [16] Brancaccio M, Enoki R, Mazuski C N, Jones J, Evans J A and Azzi A 2014 J. Neurosci. 34 15192 [17] Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, van der Horst G T J and Meijer J H 2002 Curr. Biol. 12 1130 [18] Liu C, Weaver D R, Strogatz S H and Reppert S M 1997 Cell 91 855 [19] Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M and Okamura H 2003 Science 302 1408 [20] Jones J R, Tackenberg M C and McMahon D G 2015 Nat. Neurosci. 18 373 [21] Patton A P and Hastings M H 2018 Curr. Biol. 28 R816 [22] Xu L F, Li C D and Chen L 2016 Acta Phys. Sin. 65 240701 (in Chinese) [23] Abel J H, Meeker K, Granados-Fuentes D, John P C S, Wang T J, Bales B B, Doyle F J, Herzog E D and Petzold L R 2016 Proc. Natl. Acad. Sci. USA 113 4512 [24] Shan Y, Abel J H, Li Y, Izumo M, Cox K H, Jeong B, Yoo S H, Olson D P, Doyle F J and Takahashi J S 2020 Neuron 108 164 [25] Aton S J, Colwell C S, Harmar A J, Waschek J and Herzog E D 2005 Nat. Neurosci. 8 476 [26] Patton A P, Edwards M D, Smyllie N J, Hamnett R, Chesham J E, Brancaccio M, Maywood E S and Hastings M H 2020 Nat. Commun. 11 1 [27] Ono D, Honma K I and Honma S 2021 Front. Neurosci. 15 351 [28] Gu C and Yang H 2016 Chaos 26 053112 [29] Gu C, Wang P, Weng T, Yang H and Rohling J 2019 Math. Biosci. Eng. 16 1893 [30] Wen S a, Ma D, Zhao M, Xie L, Wu Q, Gou L, Zhu C, Fan Y, Wang H and Yan J 2020 Nat. Neurosci. 23 456 [31] Rohling J H, Tjebbe vanderLeest H, Michel S, Vansteensel M J and Meijer J H 2011 PLoS One 6 e25437 [32] Gu C, Ramkisoensing A, Liu Z, Meijer J H and Rohling J H 2014 J. Biol. Rhythms 29 16 [33] Gu C, Tang M and Yang H 2016 Sci. Rep. 6 28878 [34] Gu C, Gu X, Wang P, Ren H, Weng T, Yang H and Rohling J H 2019 J. Biol. Rhythms 34 515 [35] Kim H, Min C, Jeong B and Lee K J 2022 PLoS Comput. Biol. 18 e1010213 [36] Fernandez D C, Chang Y T, Hattar S and Chen S K 2016 Proc. Natl. Acad. Sci. USA 113 6047 [37] Myung J and Pauls S D 2018 Eur. J. Neurosci. 48 2718 [38] Zhu B, Zhou J, Jia M, Yang H and Gu C 2020 Chin. Phys. B 29 068702 [39] Mure L S, Vinberg F, Hanneken A and Panda S 2019 Science 366 1251 [40] Watts D J and Strogatz S H 1998 Nature 393 440 [41] Newman M E and Watts D J 1999 Phys. Lett. A 263 341 [42] Erdös P and Rényi A 1959 Publ. Math. -Debrecen 6 290 [43] Barabási A L and Albert R 1999 Science 286 509 [44] Gonze D, Bernard S, Waltermann C, Kramer A and Herzel H 2005 Biophys. J. 89 120 [45] Gu C, Yang H and Ruan Z 2017 Phys. Rev. E 95 042409 [46] Schmal C, Herzel H and Myung J 2020 Front. Physiol. 11 272 [47] Zhou J, Gu C, Zhu B, Yang H and Rohling J H 2022 Commun. Nonlinear Sci. Numer. Simul. 111 106462 [48] Abraham U, Granada A E, Westermark P O, Heine M, Kramer A and Herzel H 2010 Mol. Syst. Biol. 6 438 [49] Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, Holtzman M J, De Schutter E, Herzel H and Bordyugov G 2018 Nat. Commun. 9 1062 [50] Zhou J, Wang H and Ouyang Q 2022 Chaos 32 023101 [51] Zheng W, Gu C, Yang H and Rohling J H 2022 Phys. Rev. E 105 014314 [52] Westermark P O, Welsh D K, Okamura H and Herzel H 2009 PLoS Comput. Biol. 5 e1000580 [53] Gu C, Xu J, Liu Z and Rohling J H 2013 Phys. Rev. E 88 022702 [54] Ratas I, Pyragas K and Tass P A 2021 Sci. Rep. 11 1 [55] Yang F and Ma J 2022 Eur. Phys. J. Spec. Top. 231 4025 [56] Balanov A, Janson N, Postnov D and Sosnovtseva O 2009 Synchronization: from simple to complex (Berlin: Springer) [57] Bass C E, Jansen H T and Roberts D C 2010 Chronobiol. Int. 27 535 [58] Fischer D, Lombardi D A, Marucci-Wellman H and Roenneberg T 2017 PLoS One 12 e0178782 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|