Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 078502    DOI: 10.1088/1674-1056/adcb24
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Unraveling the role of dangling bonds passivation in amorphous Ga2O3 for high-performance solar-blind UV detection

Zhengru Li(李正濡)1,2, Rui Zhu(朱锐)2,†, Huili Liang(梁会力)2,3, Shichen Su(宿世臣)1,‡, and Zengxia Mei(梅增霞)2,3,§
1 School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan 528225, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Low-cost and large-area uniform amorphous Ga$_{2}$O$_{3}$ (a-Ga$_{2}$O$_{3}$) solar-blind ultraviolet (UV) detectors have garnered significant attention in recent years. Oxygen vacancy (V$_{\rm O}$) defects are generally considered as the predominant defects affecting the detector performance. Reducing V$_{\rm O}$ concentration generally results in both low dark current and low photo current, significantly limiting further improvement of the photo-to-dark current ratio (PDCR) parameter. Herein, a delicately optimized atomic layer deposition (ALD) method is revealed having the capability to break through the trade-off in a-Ga$_{2}$O$_{3}$, achieving both low dark current and high photocurrent simultaneously. For a clear demonstration, a-Ga$_{2}$O$_{3 }$ contrast sample is prepared by magnetron sputtering and compared as well. Combined tests are performed including x-ray photoelectron spectroscopy, photoluminescence, electron paramagnetic resonance and Fourier-transform infrared spectroscopy. It is found that ALD a-Ga$_{2}$O$_{3}$ has a lower V$_{\rm O}$ concentration, but also a lower dangling bonds concentration which are strong non-irradiation recombination centers. Therefore, decrease of dangling bonds is suggested to compensate for the low optical gain induced by low V$_{\rm O}$ concentration and promote the PDCR to $ \sim 2.06 \times 10^{6}$. Our findings firstly prove that the dangling bonds also play an important role in determining the a-Ga$_{2}$O$_{3}$ detection performance, offering new insights for further promotion of a-Ga$_{2}$O$_{3 }$ UV detector performance via dual optimization of dangling bonds and V$_{\rm O}$.
Keywords:  amorphous gallium oxide      magnetron sputtering      atomic layer deposition      ultraviolet detectors      dangling bonds  
Received:  08 March 2025      Revised:  31 March 2025      Accepted manuscript online:  10 April 2025
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  73.61.Jc (Amorphous semiconductors; glasses)  
  61.72.jd (Vacancies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62404146, 12174275, and 62174113), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2023A1515110730 and 2023A1515140094), and the INTPART Program at the Research Council of Norway (Project number 322382).
Corresponding Authors:  Rui Zhu, Shichen Su, Zengxia Mei     E-mail:  zhurui@sslab.org.cn;shichensu@126.com;zxmei@iphy.ac.cn

Cite this article: 

Zhengru Li(李正濡), Rui Zhu(朱锐), Huili Liang(梁会力), Shichen Su(宿世臣), and Zengxia Mei(梅增霞) Unraveling the role of dangling bonds passivation in amorphous Ga2O3 for high-performance solar-blind UV detection 2025 Chin. Phys. B 34 078502

[1] Zheng W, Huang F, Zheng R and Wu H 2015 Adv. Mater. 27 3921
[2] ZhengW, Lin R, Ran J, Zhang Z, Ji X and Huang F 2018 ACS Nano 12 425
[3] Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H and Feng P X L 2017 ACS Appl. Mater. Interfaces 9 43090
[4] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264
[5] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater 28 10725
[6] Lin R, ZhengW, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mater. Interfaces 10 22419
[7] Qian L X, Wang Y, Wu Z H, Sheng T and Liu X Z 2017 Vacuum 140 106
[8] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454
[9] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photonics 4 2203
[10] Zhao Q C, Hao R T, Liu S J, Liu X X, Chang F R, Yang M, Lu Y L and Wang S R 2017 Acta Phys. Sin. 66 226801 (in Chinese)
[11] Wang Y, Wang M, Shen L, Zhu Y, Sun X, Shi G, Xu X, Li R and Ma W 2018 Chin. Phys. B 27 017801
[12] Hu S, Han D, Jiang K, Liu N,WangW, Zhang J, Liu K, Zhang T, Zhang W and Ye J 2023 Appl. Phys. Express 16 021005
[13] Wang G, Wang H, Chen T, Feng Y, Zeng H, Guo L, Liu X and Yang Y 2023 Nanotechnology 35 095201
[14] Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501
[15] Han Z, Liang H, HuoW, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833
[16] Shi Y, Shiah Y S, Sim K, Sasase M, Kim J and Hosono H 2022 Appl. Phys. Lett. 121 212101
[17] Chang H Y, Chang T C, Tai M C, Huang B S, Zhou K J, Wang Y B, Kuo H M and Huang J W 2023 Appl. Phys. Lett. 122 123504
[18] Kiazadeh A, Gomes H L, Barquinha P, Martins J, Rovisco A, Pinto J V, Martins R and Fortunato E 2016 Appl. Phys. Lett. 109 051606
[19] Yu J, Javaid K, Liang L, Wu W, Liang Y, Song A, Zhang H, Shi W, Chang T C and Cao H 2018 ACS Appl. Mater. Interfaces 10 8102
[20] Chen W H, Ma C H, Hsieh S H, Lai Y H, Kuo Y C, Chen C H, Chang S P, Chang S J, Horng R H and Chu Y H 2022 ACS Appl. Electron. Mater. 4 3099
[21] Qi X, Ji X, Yue J, Qi S, Wang J, Li P and Tang W 2022 Crystals 12 1284
[22] Zhu R, Liang H, Bai H, Zhu T and Mei Z 2022 Appl. Mater. Today 29 101556
[23] Hsu C H, Zhu R F, Kang P C, Gao P, Wu W Y, Wuu D S, Lien S Y and Zhu W Z 2023 Mater. Lett. 340 134204
[24] Yang Y, Liu W, Huang T, Qiu M, Zhang R, Yang W, He J, Chen X and Dai N 2021 ACS Appl. Mater. Interfaces 13 41802
[25] Amsterdam S H, Mane A U and Martinson A B F 2023 ACS Appl. Electron. Mater. 5 5962
[26] Russo P, Xiao M, Liang R and Zhou N Y 2018 Adv. Funct. Mater. 28 1706230
[27] Liao Y, Xie Z, Song H, Xue J and Tan C K 2024 Appl. Phys. Lett. 125 192106
[28] Liang H, Cui S, Su R, Guan P, He Y, Yang L, Chen L, Zhang Y, Mei Z and Du X 2019 ACS Photonics 6 351
[29] Liang H, Han Z and Mei Z 2021 Physica Status Solidi (a) 218 2000339
[30] Zhu R, Liang H, Hu S, Wang Y and Mei Z 2022 Adv. Elect. Materials 8 2100741
[31] Oda H, Kimura N, Yasukawa D,Wakai H and Yamanaka A 2017 Physica Status Solidi (a) 214 1600670
[32] Onuma T, Nakata Y, Sasaki K, Masui T, Yamaguchi T, Honda T, Kuramata A, Yamakoshi S and Higashiwaki M 2018 J. Appl. Phys. 124 075103
[33] Cooke J, Ranga P, Jesenovec J, McCloy J S, Krishnamoorthy S, Scarpulla M A and Sensale-Rodriguez B 2022 Sci. Rep. 12 3243
[34] Zi L, Heng Z, HaoWand Chang L 2019 Acta Phys. Sin. 68 107301 (in Chinese)
[35] Ding K, Zhang H, Jiang J, Luo J, Wu R, Ye L, Tang Y, Pang D, Li H and Li W 2024 Adv. Sci. 11 2407822
[36] Wili N 2023 Journal of Magnetic Resonance Open 16 100108
[37] Vimont A, Lavalley J C, Sahibed-Dine A, Otero Areán C, Rodríguez Delgado M and Daturi M 2005 J. Phys. Chem. B 109 9656
[38] Yang J (Jeanne), Zhao Y and Frost R L 2009 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74 398
[39] Kazansky V B, Subbotina I R, Pronin A A, Schl?gl R and Jentoft F C 2006 J. Phys. Chem. B 110 7975
[40] Hou C X, Zheng X H, Jia R, Tao K, Liu S J, Jiang S, Zhang P F, Sun H C and Li Y T 2017 Chin. Phys. B 26 098103
[41] Chang A, Mao Y, Huang Z, Hong H, Xu J, Huang W, Chen S and Li C 2020 Chin. Phys. B 29 038102
[1] Influence of sputtering ambient with hydrogen gas on optoelectrical properties of Ta-doped tin oxide
Haozhen Li(李昊臻), Xingqian Chen(陈兴谦), Minqiu Du(杜敏求), Wei Chen(陈伟), and Xiaolong Du(杜小龙). Chin. Phys. B, 2025, 34(7): 077303.
[2] Secondary electron yield of air-exposed ALD-Al2O3 coating on Ag-plated aluminum alloy
Xue-Man Wan(万雪曼), Tian-Cun Hu(胡天存), Jing Yang(杨晶), Na Zhang(张娜), Yun He(何鋆), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2024, 33(11): 113701.
[3] Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions
Maoyang Li(李茂洋), Chaochao Mo(莫超超), Peiyu Ji(季佩宇), Xiaoman Zhang(张潇漫), Jiali Chen(陈佳丽), Lanjian Zhuge(诸葛兰剑), Xuemei Wu(吴雪梅), Haiyun Tan(谭海云), and Tianyuan Huang(黄天源). Chin. Phys. B, 2024, 33(10): 108102.
[4] Glancing incidence x-ray fluorescence spectrometry based on a single-bounce parabolic capillary
Shangkun Shao(邵尚坤), Huiquan Li(李惠泉), Tianyu Yuan(袁天语), Xuepeng Sun(孙学鹏), Lu Hua(华路), Zhiguo Liu(刘志国), and Tianxi Sun(孙天希). Chin. Phys. B, 2023, 32(8): 080702.
[5] Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering
Xinke Liu(刘新科), Zhichen Lin(林之晨), Yuheng Lin(林钰恒), Jianjin Chen(陈建金), Ping Zou(邹苹), Jie Zhou(周杰), Bo Li(李博), Longhai Shen(沈龙海), Deliang Zhu(朱德亮), Qiang Liu(刘强), Wenjie Yu(俞文杰), Xiaohua Li(黎晓华), Hong Gu(顾泓), Xinzhong Wang(王新中), and Shuangwu Huang(黄双武). Chin. Phys. B, 2023, 32(11): 117701.
[6] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[10] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[11] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[12] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[13] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
No Suggested Reading articles found!