| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Unraveling the role of dangling bonds passivation in amorphous Ga2O3 for high-performance solar-blind UV detection |
| Zhengru Li(李正濡)1,2, Rui Zhu(朱锐)2,†, Huili Liang(梁会力)2,3, Shichen Su(宿世臣)1,‡, and Zengxia Mei(梅增霞)2,3,§ |
1 School of Electronic Science and Engineering (School of Microelectronics), South China Normal University, Foshan 528225, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Low-cost and large-area uniform amorphous Ga$_{2}$O$_{3}$ (a-Ga$_{2}$O$_{3}$) solar-blind ultraviolet (UV) detectors have garnered significant attention in recent years. Oxygen vacancy (V$_{\rm O}$) defects are generally considered as the predominant defects affecting the detector performance. Reducing V$_{\rm O}$ concentration generally results in both low dark current and low photo current, significantly limiting further improvement of the photo-to-dark current ratio (PDCR) parameter. Herein, a delicately optimized atomic layer deposition (ALD) method is revealed having the capability to break through the trade-off in a-Ga$_{2}$O$_{3}$, achieving both low dark current and high photocurrent simultaneously. For a clear demonstration, a-Ga$_{2}$O$_{3 }$ contrast sample is prepared by magnetron sputtering and compared as well. Combined tests are performed including x-ray photoelectron spectroscopy, photoluminescence, electron paramagnetic resonance and Fourier-transform infrared spectroscopy. It is found that ALD a-Ga$_{2}$O$_{3}$ has a lower V$_{\rm O}$ concentration, but also a lower dangling bonds concentration which are strong non-irradiation recombination centers. Therefore, decrease of dangling bonds is suggested to compensate for the low optical gain induced by low V$_{\rm O}$ concentration and promote the PDCR to $ \sim 2.06 \times 10^{6}$. Our findings firstly prove that the dangling bonds also play an important role in determining the a-Ga$_{2}$O$_{3}$ detection performance, offering new insights for further promotion of a-Ga$_{2}$O$_{3 }$ UV detector performance via dual optimization of dangling bonds and V$_{\rm O}$.
|
Received: 08 March 2025
Revised: 31 March 2025
Accepted manuscript online: 10 April 2025
|
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
| |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
| |
73.61.Jc
|
(Amorphous semiconductors; glasses)
|
| |
61.72.jd
|
(Vacancies)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62404146, 12174275, and 62174113), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2023A1515110730 and 2023A1515140094), and the INTPART Program at the Research Council of Norway (Project number 322382). |
Corresponding Authors:
Rui Zhu, Shichen Su, Zengxia Mei
E-mail: zhurui@sslab.org.cn;shichensu@126.com;zxmei@iphy.ac.cn
|
Cite this article:
Zhengru Li(李正濡), Rui Zhu(朱锐), Huili Liang(梁会力), Shichen Su(宿世臣), and Zengxia Mei(梅增霞) Unraveling the role of dangling bonds passivation in amorphous Ga2O3 for high-performance solar-blind UV detection 2025 Chin. Phys. B 34 078502
|
[1] Zheng W, Huang F, Zheng R and Wu H 2015 Adv. Mater. 27 3921 [2] ZhengW, Lin R, Ran J, Zhang Z, Ji X and Huang F 2018 ACS Nano 12 425 [3] Zheng X Q, Lee J, Rafique S, Han L, Zorman C A, Zhao H and Feng P X L 2017 ACS Appl. Mater. Interfaces 9 43090 [4] Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D and Fang X 2017 Adv. Funct. Mater. 27 1700264 [5] Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D and Luo L B 2016 Adv. Mater 28 10725 [6] Lin R, ZhengW, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mater. Interfaces 10 22419 [7] Qian L X, Wang Y, Wu Z H, Sheng T and Liu X Z 2017 Vacuum 140 106 [8] Cui S, Mei Z, Zhang Y, Liang H and Du X 2017 Adv. Opt. Mater. 5 1700454 [9] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z and Li Y R 2017 ACS Photonics 4 2203 [10] Zhao Q C, Hao R T, Liu S J, Liu X X, Chang F R, Yang M, Lu Y L and Wang S R 2017 Acta Phys. Sin. 66 226801 (in Chinese) [11] Wang Y, Wang M, Shen L, Zhu Y, Sun X, Shi G, Xu X, Li R and Ma W 2018 Chin. Phys. B 27 017801 [12] Hu S, Han D, Jiang K, Liu N,WangW, Zhang J, Liu K, Zhang T, Zhang W and Ye J 2023 Appl. Phys. Express 16 021005 [13] Wang G, Wang H, Chen T, Feng Y, Zeng H, Guo L, Liu X and Yang Y 2023 Nanotechnology 35 095201 [14] Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501 [15] Han Z, Liang H, HuoW, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833 [16] Shi Y, Shiah Y S, Sim K, Sasase M, Kim J and Hosono H 2022 Appl. Phys. Lett. 121 212101 [17] Chang H Y, Chang T C, Tai M C, Huang B S, Zhou K J, Wang Y B, Kuo H M and Huang J W 2023 Appl. Phys. Lett. 122 123504 [18] Kiazadeh A, Gomes H L, Barquinha P, Martins J, Rovisco A, Pinto J V, Martins R and Fortunato E 2016 Appl. Phys. Lett. 109 051606 [19] Yu J, Javaid K, Liang L, Wu W, Liang Y, Song A, Zhang H, Shi W, Chang T C and Cao H 2018 ACS Appl. Mater. Interfaces 10 8102 [20] Chen W H, Ma C H, Hsieh S H, Lai Y H, Kuo Y C, Chen C H, Chang S P, Chang S J, Horng R H and Chu Y H 2022 ACS Appl. Electron. Mater. 4 3099 [21] Qi X, Ji X, Yue J, Qi S, Wang J, Li P and Tang W 2022 Crystals 12 1284 [22] Zhu R, Liang H, Bai H, Zhu T and Mei Z 2022 Appl. Mater. Today 29 101556 [23] Hsu C H, Zhu R F, Kang P C, Gao P, Wu W Y, Wuu D S, Lien S Y and Zhu W Z 2023 Mater. Lett. 340 134204 [24] Yang Y, Liu W, Huang T, Qiu M, Zhang R, Yang W, He J, Chen X and Dai N 2021 ACS Appl. Mater. Interfaces 13 41802 [25] Amsterdam S H, Mane A U and Martinson A B F 2023 ACS Appl. Electron. Mater. 5 5962 [26] Russo P, Xiao M, Liang R and Zhou N Y 2018 Adv. Funct. Mater. 28 1706230 [27] Liao Y, Xie Z, Song H, Xue J and Tan C K 2024 Appl. Phys. Lett. 125 192106 [28] Liang H, Cui S, Su R, Guan P, He Y, Yang L, Chen L, Zhang Y, Mei Z and Du X 2019 ACS Photonics 6 351 [29] Liang H, Han Z and Mei Z 2021 Physica Status Solidi (a) 218 2000339 [30] Zhu R, Liang H, Hu S, Wang Y and Mei Z 2022 Adv. Elect. Materials 8 2100741 [31] Oda H, Kimura N, Yasukawa D,Wakai H and Yamanaka A 2017 Physica Status Solidi (a) 214 1600670 [32] Onuma T, Nakata Y, Sasaki K, Masui T, Yamaguchi T, Honda T, Kuramata A, Yamakoshi S and Higashiwaki M 2018 J. Appl. Phys. 124 075103 [33] Cooke J, Ranga P, Jesenovec J, McCloy J S, Krishnamoorthy S, Scarpulla M A and Sensale-Rodriguez B 2022 Sci. Rep. 12 3243 [34] Zi L, Heng Z, HaoWand Chang L 2019 Acta Phys. Sin. 68 107301 (in Chinese) [35] Ding K, Zhang H, Jiang J, Luo J, Wu R, Ye L, Tang Y, Pang D, Li H and Li W 2024 Adv. Sci. 11 2407822 [36] Wili N 2023 Journal of Magnetic Resonance Open 16 100108 [37] Vimont A, Lavalley J C, Sahibed-Dine A, Otero Areán C, Rodríguez Delgado M and Daturi M 2005 J. Phys. Chem. B 109 9656 [38] Yang J (Jeanne), Zhao Y and Frost R L 2009 Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 74 398 [39] Kazansky V B, Subbotina I R, Pronin A A, Schl?gl R and Jentoft F C 2006 J. Phys. Chem. B 110 7975 [40] Hou C X, Zheng X H, Jia R, Tao K, Liu S J, Jiang S, Zhang P F, Sun H C and Li Y T 2017 Chin. Phys. B 26 098103 [41] Chang A, Mao Y, Huang Z, Hong H, Xu J, Huang W, Chen S and Li C 2020 Chin. Phys. B 29 038102 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|