Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077103    DOI: 10.1088/1674-1056/adc191
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling

Zhuoqun Wen(文卓群)1,2,3, Haiyu Zhu(诸海渝)2,4, Wen-Hao Liu(刘文浩)5, Zhi Wang(王峙)5,†, Wen Xiong(熊稳)1,2,‡, and Xingzhan Wei(魏兴战)1,2,3,§
1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
2 Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
5 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design. Photon absorption generates electron-hole pairs, and subsequent scatterings can induce ultrafast thermalization within a picosecond, forming a quasi-equilibrium distribution with overheated electrons. The high-energy tail of this distribution enables carriers to overcome energy barriers, thereby enhancing quantum efficiency - a phenomenon known as photothermionic emission (PTE). Despite its importance, the onset and mechanisms of PTE remain under debate. Using real-time time-dependent density functional theory (rt-TDDFT), we investigate ultrafast carrier thermalization in two-dimensional (2D) materials graphene and PtTe$_{2}$, and the results reveal distinct differences. In graphene, both electrons and holes thermalize into Fermi-Dirac distributions with good agreement to experiment, while PtTe$_{2}$ exhibits anomalous high-energy tails for both electrons and holes, deviating significantly from Fermi-Dirac behavior. We attribute this anomaly to differences in orbital coupling between the two materials, from which we derive design principles for identifying optimal PTE candidates and, ultimately, improving photodetector performance.
Keywords:  ultrafast phenomena      time-dependent density functional theory      photoelectronics      photo-thermionic emission      2D materials      graphene      platinum ditelluride  
Received:  17 January 2025      Revised:  06 March 2025      Accepted manuscript online:  18 March 2025
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the Natural Science Foundation of Chongqing of China (Grant No. CSTB2023NSCQ-LZX0087) and the National Natural Science Foundation of China (Grant Nos. 62074021 and 12174380).
Corresponding Authors:  Zhi Wang, Wen Xiong, Xingzhan Wei     E-mail:  wangzhi@semi.ac.cn;xiongwen@cigit.ac.cn;weixingzhan@cigit.ac.cn

Cite this article: 

Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战) Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling 2025 Chin. Phys. B 34 077103

[1] Scales C and Berini P 2010 IEEE J. Quantum Electron. 46 633
[2] Grajower M, Levy U and Khurgin J B 2018 ACS Photon. 5 4030
[3] Vabbina P, Choudhary N, Chowdhury A A, Sinha R, Karabiyik M, Das S, Choi W and Pala N 2015 ACS Appl. Mater. Interfaces 7 15206
[4] Wang X, Cheng Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888
[5] Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X,Wang K, Zhu H and Fang Y 2015 Small 12 595
[6] Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K and Bao Q 2017 Small 13 1700268
[7] Zeng L, Wu D, Jie J, Ren X, Hu X, Lau S P, Chai Y and Tsang Y H 2020 Adv. Mater. 32 2004412
[8] Zeng L, Han W, Ren X, Li X, Wu D, Liu S, Wang H, Lau S P, Tsang Y H, Shan C X and Jie J 2023 Nano Lett. 23 8241
[9] Allen P B 1987 Phys. Rev. Lett. 59 1460
[10] Massicotte M, Schmidt P, Vialla F, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2016 Nat. Commun. 7 12174
[11] Fu S, du Fossé I, Jia X, Xu J, Yu X, Zhang H, ZhengW, Krasel S, Chen Z,Wang Z M, Tielrooij K J, Bonn M, Houtepen A J andWang H I 2021 Sci. Adv. 7 eabd9061
[12] Paul K K, Kim J H and Lee Y H 2021 Nat. Rev. Phys. 3 178
[13] Peng L, Liu L, Du S, Bodepudi S C, Li L, Liu W, Lai R, Cao X, Fang W, Liu Y, Liu X, Lv J, Abid M, Liu J, Jin S, Wu K, Lin M L, Cong X, Tan P H, Zhu H, Xiong Q, Wang X, Hu W, Duan X, Yu B, Xu Z, Xu Y and Gao C 2022 InfoMat 4 e12309
[14] Johannsen J C, Ulstrup S, Cilento F, Crepaldi A, Zacchigna M, Cacho C, Turcu I C E, Springate E, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M and Hofmann P 2013 Phys. Rev. Lett. 111 027403
[15] Gierz I, Petersen J C, Mitrano M, Cacho C, Turcu I C E, Springate E, Stöhr A, Köhler A, Starke U and Cavalleri A 2013 Nat. Mater. 12 1119
[16] Lui C H, Mak K F, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 127404
[17] Block A, Liebel M, Yu R, Spector M, Sivan Y, García de Abajo F J and van Hulst N F 2019 Sci. Adv. 5 eaav8965
[18] Wu S and Sheldon M 2023 Annu. Rev. Phys. Chem. 74 521
[19] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N 2017 Nano Lett. 17 5805
[20] Uehlein M, Weber S T and Rethfeld B 2022 Nanomaterials 12 1655
[21] Carpene E 2006 Phys. Rev. B 74 024301
[22] Shin T, Teitelbaum S W, Wolfson J, Kandyla M and Nelson K A 2015 J. Chem. Phys. 143 194705
[23] Wang X, Nie S, Li J, Clinite R, Clark J E and Cao J 2010 Phys. Rev. B 81 220301
[24] Kim R, Perebeinos V and Avouris P 2011 Phys. Rev. B 84 075449
[25] Sadasivam S, Chan M K Y and Darancet P 2017 Phys. Rev. Lett. 119 136602
[26] Riffe D M and Wilson R B 2023 Phys. Rev. B 107 214309
[27] Nielsen D O, Van de Walle C G, Pantelides S T, Schrimpf R D, Fleetwood D M and Fischetti M V 2023 Phys. Rev. B 108 155203
[28] Girotto N, Caruso F and Novko D 2023 J. Phys. Chem. C 127 16515
[29] Riffe D M and Wilson R B 2024 Phys. Rev. B 109 184310
[30] Saavedra J R M, Asenjo-Garcia A and García de Abajo F J 2016 ACS Photon. 3 1637
[31] Caruso F, Novko D and Draxl C 2020 Phys. Rev. B 101 035128
[32] Perfetto E and Stefanucci G 2023 Nano Lett. 23 7029
[33] Modine N A and Hatcher R M 2015 J. Chem. Phys. 142 204111
[34] Wang Z, Li S-S and Wang L-W 2015 Phys. Rev. Lett. 114 063004
[35] Silaeva E P, Bevillon E, Stoian R and Colombier J P 2018 Phys. Rev. B 98 094306
[36] Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A and Keller U 2019 Nat. Phys. 15 1145
[37] Schumacher Z, Sato S A, Neb S, Niedermayr A, Gallmann L, Rubio A and Keller U 2023 Proc. Natl. Acad. Sci. 120 e2221725120
[38] Kachan E, Tsaturyan A, Stoian R and Colombier J P 2023 Eur. Phys. J. Spec. Top. 232 2241
[39] Shang N Z, Huang C, Chen Q, Liu C, Yao G J, Sun Z P, Meng S, Liu K H and Hong H 2024 Sci. Bull. 69 2522
[40] Hwang E H, Hu B Y K and Das Sarma S 2007 Phys. Rev. B 76 115434
[41] Breusing M, Kuehn S, Winzer T, Malić E, Milde F, Severin N, Rabe J P, Ropers C, Knorr A and Elsaesser T 2011 Phys. Rev. B 83 153410
[42] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S and Koppens F H L 2013 Nat. Phys. 9 248
[43] Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G and Polini M 2013 Nat. Commun. 4 1987
[44] Nie Z, Long R, Sun L, Huang C C, Zhang J, Xiong Q, Hewak D W, Shen Z, Prezhdo O V and Loh Z H 2014 ACS Nano 8 10931
[45] Rohde G, Stange A, Müller A, Behrendt M, Oloff L P, Hanff K, Albert T J, Hein P, Rossnagel K and Bauer M 2018 Phys. Rev. Lett. 121 256401
[46] Weber S T and Rethfeld B 2019 Phys. Rev. B 99 174314
[47] Lloyd-Hughes J, Oppeneer P M, Pereira dos Santos T, et al. 2021 J. Phys.: Condens. Matter 33 353001
[48] de Vos E W, Neb S, Niedermayr A, Burri F, Hollm M, Gallmann L and Keller U 2023 Phys. Rev. Lett. 131 226901
[49] Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M and Brongersma M L 2023 Science 382 299
[50] Ma J, Wang Z and Wang L W 2015 Nat. Commun. 6 10107
[51] Liu H W, Liu W H, Suo Z J, Wang Z, Luo J W, Li S S and Wang L W 2022 Proc. Natl. Acad. Sci. 119 e2122534119
[52] LiuWH, Gu Y X,Wang Z, Li S S,Wang LWand Luo J W 2023 Phys. Rev. Lett. 130 146901
[53] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[54] Baskin Y and Meyer L 1955 Phys. Rev. 100 544
[55] Li J, Kolekar S, Ghorbani-Asl M, Lehnert T, Biskupek J, Kaiser U, Krasheninnikov A V and Batzill M 2021 ACS Nano 15 13249
[56] Charlier J C, Gonze X and Michenaud J P 1991 Phys. Rev. B 43 4579
[57] Zakharchenko K V, Katsnelson M I and Fasolino A 2009 Phys. Rev. Lett. 102 046808
[58] Li C, Debnath B, Tan X, Su S, Xu K, Ge S, Neupane M R and Lake R K 2018 Carbon 138 451
[59] Luo B, Yao Y, Tian E, Song H, Wang X, Li G, Xi K, Li B, Song H and Li L 2019 Proc. Natl. Acad. Sci. 116 17213
[60] Villaos R A B, Crisostomo C P, Huang Z Q, Huang S M, Padama A A B, Albao M A, Lin H and Chuang F C 2019 npj 2D Mater. Appl. 3 2
[61] Lin M K, Villaos R A B, Hlevyack J A, Chen P, Liu R Y, Hsu C H, Avila J, Mo S K, Chuang F C and Chiang T C 2020 Phys. Rev. Lett. 124 036402
[62] Zhang J, Xie Y, Hu Y and Shao H 2020 Appl. Surf. Sci. 532 147387
[63] Shahrokhi M 2017 Diamond Relat. Mater. 77 35
[64] LiuWH, Luo JW, Li S S and Wang L W 2020 Phys. Rev. B 102 184308
[65] LiuWH, Luo JW, Li S S and Wang L W 2022 Phys. Rev. B 105 224306
[1] Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar. Chin. Phys. B, 2025, 34(6): 066302.
[2] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[3] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[4] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[5] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[6] Fabrication of two-dimensional van der Waals moiré superlattices
Zihao Wan(万子豪), Chao Wang(王超), Hang Zheng(郑航), Wenna Tang(唐文娜), Zihao Fu(付梓豪), Weilin Liu(刘伟林), Zhenjia Zhou(周振佳), Jun Li(李骏), Guowen Yuan(袁国文), and Libo Gao(高力波). Chin. Phys. B, 2025, 34(4): 047302.
[7] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[8] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(2): 027503.
[9] Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics
Kaipeng Liu(柳开鹏), Shuai Zhou(周帅), Shiwei Dai(戴士为), and Lixin Ge(葛力新). Chin. Phys. B, 2025, 34(1): 014202.
[10] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[11] Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
A. Kalani, Alireza Amani, and M. A. Ramzanpour. Chin. Phys. B, 2024, 33(8): 080303.
[12] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[13] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[14] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[15] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
No Suggested Reading articles found!