Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077404    DOI: 10.1088/1674-1056/addcc6
RAPID COMMUNICATION Prev   Next  

Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ revealed by laser-based angle-resolved photoemission spectroscopy

Hao Chen(陈浩)1,2,†, Jumin Shi(史聚民)1,2,†, Xiangyu Luo(罗翔宇)1, Yinghao Li(李颖昊)1,2, Yiwen Chen(陈逸雯)1,2, Chaohui Yin(殷超辉)1, Yingjie Shu(束英杰)1,2, Jiuxiang Zhang(张九相)1,2, Taimin Miao(苗泰民)1,2, Bo Liang(梁波)1,2, Wenpei Zhu(朱文培)1,2, Neng Cai(蔡能)1,2, Xiaolin Ren(任晓琳)1,2, Chengtian Lin(林成天)3, Shenjin Zhang(张申金)4, Zhimin Wang(王志敏)4, Fengfeng Zhang(张丰丰)4, Feng Yang(杨峰)4, Qinjun Peng(彭钦军)4, Zuyan Xu(许祖彦)4, Guodong Liu(刘国东)1,2,5, Hanqing Mao(毛寒青)1,2,5, Xintong Li(李昕彤)1,2,5, Lin Zhao(赵林)1,2,5,‡, and X. J. Zhou(周兴江)1,2,5,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany;
4 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor $\mathrm{Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+\delta}}$ (Bi2223) is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy (ARPES). Bi2223 single crystals with different doping levels are prepared by controlled annealing, which cover the underdoped, optimally-doped and overdoped regions. The electronic phase diagram of Bi2223 is established which describes the $T_{\rm c}$ dependence on the sample doping level. The doping dependence of the nodal Fermi momentum for the outer (OP) and inner (IP) CuO$_2$ planes is determined. Charge distribution imbalance between the OP and IP CuO$_2$ planes is quantified, showing enhanced disparity with increasing doping. Nodal band dispersions demonstrate a prominent kink at $\sim94$ meV in the IP band, attributed to the unique Cu coordination in the IP plane, while a weaker $\sim60$ meV kink is observed in the OP band. The nodal Fermi velocity of both OP and IP bands is nearly constant at $\sim1.62$ eV$\cdot$Å independent of doping. These results provide important information to understand the origin of high $T_{\rm c}$ and superconductivity mechanism in high temperature cuprate superconductors.
Keywords:  Bi2223      angle-resolved photoemission spectroscopy      nodal electron dynamics      doping evolution  
Received:  22 May 2025      Revised:  22 May 2025      Accepted manuscript online:  23 May 2025
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.-h (Cuprate superconductors)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12488201 by X.J.Z., 12374066 by L.Z., and 12374154 by X.T.L.), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800 by X.J.Z., 2022YFA1604200 by L.Z., 2022YFA1403900 by G.D.L. and 2023YFA1406000 by X.T.L.), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000 by X.J.Z.), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800 by X.J.Z.), the Youth Innovation Promotion Association of CAS (Grant No. Y2021006 by L.Z.), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Lin Zhao, X. J. Zhou     E-mail:  LZhao@iphy.ac.cn;XJZhou@iphy.ac.cn

Cite this article: 

Hao Chen(陈浩), Jumin Shi(史聚民), Xiangyu Luo(罗翔宇), Yinghao Li(李颖昊), Yiwen Chen(陈逸雯), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Jiuxiang Zhang(张九相), Taimin Miao(苗泰民), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Xiaolin Ren(任晓琳), Chengtian Lin(林成天), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Xintong Li(李昕彤), Lin Zhao(赵林), and X. J. Zhou(周兴江) Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ revealed by laser-based angle-resolved photoemission spectroscopy 2025 Chin. Phys. B 34 077404

[1] Chu C W, Deng L Z and Lv B 2015 Physica C 514 290
[2] Scott B A, Suard E Y, Tsuei C C, Mitzi D B, McGuire T R, Chen B H and Walker D 1994 Physica C 230 239
[3] Chakravarty S, Kee H Y and Völker K 2004 Nature 428 53
[4] Iyo A, Tanaka Y, Kito H, Kodama Y, Shirage P M, Shivagan D D, Matsuhata H, Tokiwa K andWatanabe T 2007 J. Phys. Soc. Jpn. 76 094711
[5] Eisaki H, Kaneko N, Feng D L, Damascelli A, Mang P K, Shen K M, Shen Z X and Greven M 2004 Phys. Rev. B 69 064512
[6] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[7] Fujii T, Terasaki I, Watanabe T and Matsuda A 2002 Phys. Rev. B 66 024507
[8] Piriou A, Fasano Y, Giannini E and Fischer 2008 Phys. Rev. B 77 184508
[9] Feng D L, Damascelli A, Shen K M, Motoyama N, Lu D H, Eisaki H, Shimizu K, Shimoyama J I, Kishio K, Kaneko N, Greven M, Gu G D, Zhou X J, Kim C, Ronning F, Armitage N P and Shen Z X 2002 Phys. Rev. Lett. 88 107001
[10] Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H, Fujita T, Nakashima Y, Ino A, Arita M, Namatame H, Taniguchi M, Ono K, Kubota M, Lu D H, Shen Z X, Kojima K M and Uchida S 2010 Physica C 470 S14
[11] Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H, Fujita T, Nakashima Y, Ino A, Arita M, Namatame H, Taniguchi M, Ono K, Kubota M, Lu D H, Shen Z X, Kojima K M and Uchida S 2010 Phys. Rev. Lett. 104 227001
[12] Ideta S, Yoshida T, Fujimori A, Anzai H, Fujita T, Ino A, Arita M, Namatame H, Taniguchi M, Shen Z X, Takashima K, Kojima K and Uchida S 2012 Phys. Rev. B 85 104515
[13] Ideta S, Yoshida T, Hashimoto M, Fujimori A, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Takashima K, Kojima K M and Uchida S 2013 J. Phys.: Conf. Ser. 428 012039
[14] Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S and Kondo T 2017 Phys. Rev. Lett. 119 217001
[15] Ideta S, Johnston S, Yoshida T, Tanaka K, Mori M, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Ishida S, Takashima K, Kojima K M, Devereaux T P, Uchida S and Fujimori A 2021 Phys. Rev. Lett. 127 217004
[16] Luo X Y, Chen H, Li Y H, Gao Q, Yin C H, Yan H T, Miao T M, Luo H L, Shu Y J, Chen Y W, Lin C T, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Liu G D, Zhao L, Xu Z Y, Xiang T and Zhou X J 2023 Nat. Phys. 19 1841
[17] Ideta S, Adachi S, Noji T, Yamaguchi S, Sasaki N, Ishida S, Uchida S, Fujii T, Watanabe T, Wang W O, Moritz B, Devereaux T P, Arita M, Mou C Y, Yoshida T, Tanaka K, Lee T K and Fujimori A 2025 arXiv: 2502.16013
[cond-mat.supr-con]
[18] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[19] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101
[20] Lin C T and Liang B 2002 New Trends in Superconductivity (Dordrecht: Springer Netherlands) pp. 19-28
[21] Liang B, Lin C T, Shang P and Yang G 2002 Physica C 383 75
[22] Shimizu K, Okabe T, Horii S, Otzschi K, Shimoyama J and Kishio K 2002 MRS Online Proc. Libr. 689 35
[23] Wei J, Zhang Y, Peng R, Eisaki H and Feng D L 2010 Physica C 470 12
[24] Mukuda H, Shimizu S, Iyo A and Kitaoka Y 2012 J. Phys. Soc. Jpn. 81 011008
[25] Wang Z C, Zou CW, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y and Zhu J 2023 Science 381 227
[26] Bogdanov P V, Lanzara A, Kellar S A, Zhou X J, Lu E D, Zheng W J, Gu G, Shimoyama J I, Kishio K, Ikeda H, Yoshizaki R, Hussain Z and Shen Z X 2000 Phys. Rev. Lett. 85 2581
[27] Johnson P D, Valla T, Fedorov A V, Yusof Z, Wells B O, Li Q, Moodenbaugh A R, Gu G D, Koshizuka N, Kendziora C, Jian S and Hinks D G 2001 Phys. Rev. Lett. 87 177007
[28] Kaminski A, Randeria M, Campuzano J C, Norman M R, Fretwell H, Mesot J, Sato T, Takahashi T and Kadowaki K 2001 Phys. Rev. Lett. 86 1070
[29] Lanzara A, Bogdanov P V, Zhou X J, Kellar S A, Feng D L, Lu E D, Yoshida T, Eisaki H, Fujimori A, Kishio K, Shimoyama J I, Noda T, Uchida S, Hussain Z and Shen Z X 2001 Nature 412 510
[30] Zhou X J, Yoshida T, Lanzara A, Bogdanov P V, Kellar S A, Shen K M, Yang W L, Ronning F, Sasagawa T, Kakeshita T, Noda T, Eisaki H, Uchida S, Lin C T, Zhou F, Xiong JW, TiWX, Zhao Z X, Fujimori A, Hussain Z and Shen Z X 2003 Nature 423 398
[31] Yan H T, Bok J M, He J F, ZhangWT, Gao Q, Luo X Y, Cai Y Q, Peng Y Y, Meng J Q, Li C, Chen H, Song C Y, Yin C H, Miao T M, Chen Y W, Gu G D, Lin C T, Zhang F F, Yang F, Zhang S J, Peng Q J, Liu G D, Zhao L, Choi H Y, Xu Z Y and Zhou X J 2023 Proc. Natl. Acad. Sci. USA 120 e2219491120
[1] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[2] Electronic structure of a narrow-gap semiconductor KAg3Te2
Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬). Chin. Phys. B, 2025, 34(4): 047102.
[3] Angle-resolved photoemission spectroscopy study on transition-metal kagome materials
Jiangang Yang(杨鉴刚), Jianwei Huang(黄建伟), Lin Zhao(赵林), and X. J. Zhou(周兴江). Chin. Phys. B, 2025, 34(4): 047101.
[4] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[5] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[6] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[7] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[8] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[9] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[10] Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy
Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). Chin. Phys. B, 2024, 33(11): 117101.
[11] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[12] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[13] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[14] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[15] Extremely fast vortex dynamics in Bi2Sr2Ca2Cu3O10+δ crystalline nanostrip
A B Yu(于奥博), C T Lin(林成天), X F Zhang(张孝富), and L X You(尤立星). Chin. Phys. B, 2023, 32(6): 067402.
No Suggested Reading articles found!