Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077405    DOI: 10.1088/1674-1056/ad51f8
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy

Chaohui Yin(殷超辉)1,2,†, Qinghong Wang(汪清泓)1,2,†, Yuyang Xie(解于洋)1,2, Yiwen Chen(陈逸雯)1,2, Junhao Liu(刘俊豪)1,2, Jiangang Yang(杨鉴刚)1,2, Junjie Jia(贾俊杰)1,2, Xing Zhang(张杏)1,2, Wenkai Lv(吕文凯)1,2, Hongtao Yan(闫宏涛)1,2, Hongtao Rong(戎洪涛)1,2, Shenjin Zhang(张申金)3, Zhimin Wang(王志敏)3, Nan Zong(宗楠)3, Lijuan Liu(刘丽娟)3, Rukang Li(李如康)3, Xiaoyang Wang(王晓洋)3, Fengfeng Zhang(张丰丰)3, Feng Yang(杨峰)3, Qinjun Peng(彭钦军)3, Zuyan Xu(许祖彦)3, Guodong Liu(刘国东)1,2,4, Hanqing Mao(毛寒青)1,2,4, Lin Zhao(赵林)1,2,4,‡, Xintong Li(李昕彤)1,2,4,§, and Xingjiang Zhou(周兴江)1,2,4,¶
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  In high temperature cuprate superconductors, it was found that the superfluid density decreases with the increase of hole doping. One natural question is whether there exists normal fluid in the superconducting state in the overdoped region. In this paper, we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a $T_\mathrm{c}$ of 48K. We find that this heavily overdoped Bi2212 remains in the strong coupling regime with $2 \varDelta_0 / (k_{\mathrm{B}} T_{\mathrm{c}})=5.8$. The single-particle scattering rate is very small along the nodal direction ($\sim$5meV) and increases as the momentum moves from the nodal to the antinodal regions. A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero. The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212. These results provide key information to understand the high $T_\mathrm{c}$ mechanism in the cuprate superconductors.
Keywords:  cuprate superconductor      angle-resolved photoemission spectroscopy      electronic structure  
Received:  24 May 2024      Revised:  30 May 2024      Accepted manuscript online:  30 May 2024
PACS:  74.72.-h (Cuprate superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12488201, 12374066, 12074411, and 12374154), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800, 2022YFA1604200, 2022YFA1403900, and 2023YFA1406000), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB33000000), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y2021006), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Lin Zhao, Xintong Li, Xingjiang Zhou     E-mail:  lzhao@iphy.ac.cn;xintongli@iphy.ac.cn;XJZhou@iphy.ac.cn

Cite this article: 

Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江) Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy 2024 Chin. Phys. B 33 077405

[1] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[2] Uemura Y J, Luke G M, Sternlieb B J, et al. 1989 Phys. Rev. Lett. 62 2317
[3] Hashimoto M, Vishik I M, He R H, Devereaux T P and Shen Z X 2014 Nat. Phys. 10 483
[4] Božović I, He X, Wu J and Bollinger A T 2016 Nature 536 309
[5] Mahmood F, He X, Božović I and Armitage N P 2019 Phys. Rev. Lett. 122 027003
[6] Tromp W O, Benschop T, Ge J F, Battisti I, Bastiaans K M, Chatzopoulos D, Vervloet A H M, Smit S, van Heumen E, Golden M S, Huang Y K, Kondo T, Takeuchi T, Yin Y, Hoffman J E, Sulangi M A, Zaanen J and Allan M P 2023 Nat. Mater. 22 703
[7] Ye S S, Xu M, Yan H T, Li Z X, Zou C W, Li X T, Hao Z Q, Yin C H, Chen Y W, Zhou X J, Lee D H and Wang Y Y 2024 Nat. Commun. 15 4939
[8] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[9] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006
[10] Liang B and Lin C T 2002 Journal of Crystal Growth 237 756
[11] Wen J S, Xu Z J, Xu G Y, Hücker M, Tranquada J M and Gu G D 2008 Journal of Crystal Growth 310 1401
[12] Zhang Y X, Zhao L, Gu G D and Zhou X J 2016 Chin. Phys. Lett. 33 067403
[13] Presland M R, Tallon J L, Buckley R G, Liu R S and Flower N E 1991 Physica C 176 95
[14] Kaminski A, Rosenkranz S, Fretwell H M, Norman M R, Randeria M, Campuzano J C, Park J M, Li Z Z and Raffy H 2006 Phys. Rev. B 73 174511
[15] Norman M R, Randeria M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093
[16] He Y, Hashimoto M, Song D, Chen S D, He J, Vishik I M, Moritz B, Lee D H, Nagaosa N, Zaanen J, Devereaux T P, Yoshida Y, Eisaki H, Lu D H and Shen Z X 2018 Science 362 62
[17] Zhou X J, Yoshida T, Lee D H, Yang W L, Brouet V, Zhou F, Ti W X, Xiong J W, Zhao Z X, Sasagawa T, Kakeshita T, Eisaki H, Uchida S, Fujimori A, Hussain Z and Shen Z X 2004 Phys. Rev. Lett. 92 187001
[18] Platé M, Mottershead J D F, Elfimov I S, Peets D C, Liang R X, Bonn D A, Hardy W N, Chiuzbaian S, Falub M, Shi M, Patthey L and Damascelli A 2005 Phys. Rev. Lett. 95 077001
[19] Hwang J, Timusk T and Gu G D 2007 J. Phys.: Condens. Matter 19 125208
[1] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[2] Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor
Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077404.
[3] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[4] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[5] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[6] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[7] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[8] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[9] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[10] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[11] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[12] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[13] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[14] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[15] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
No Suggested Reading articles found!