|
Special Issue:
SPECIAL TOPIC — Superconductivity in nickel oxides
|
| SPECIAL TOPIC — Superconductivity in nickel oxides |
Prev
Next
|
|
|
Theoretical investigation of potential superconductivity in Sr-doped La3Ni2O7 at ambient pressure |
| Lei Shi(石磊)1, Ying Luo(罗颖)1, Wei Wu(吴为)1,2,†, and Yunwei Zhang(张云蔚)1,2,‡ |
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China |
|
|
|
|
Abstract The recent discovery of pressure-induced superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ has established a novel platform for studying unconventional superconductors. However, achieving superconductivity in this system currently requires relatively high pressures. In this study, we propose a chemical pressure strategy via Sr substitution to stabilize high-$T_{\rm c}$ superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under ambient conditions. Using density functional theory (DFT) calculations, we systematically investigate the structural and electronic properties of Sr-doped La$_{3-x}$Sr$_{x}$Ni$_{2}$O$_{7}$ ($x= 0.25$, 0.5, 1) at ambient pressure and identify two dynamically stable phases: La$_{2.5}$Sr$_{0.5}$Ni$_{2}$O$_{7}$ and La$_{2}$SrNi$_{2}$O$_{7}$. Our calculations reveal that both phases exhibit metallization of the $\sigma $-bonding bands dominated by Ni-d$_{z^2}$ orbitals - a key feature associated with high-$T_{\rm c} $ superconductivity, as reported in the high-pressure phase of La$_{3}$Ni$_{2}$O$_{7}$. Further analysis using tight-binding models shows that the key hopping parameters in La$_{2.5}$Sr$_{0.5}$Ni$_{2}$O$_{7}$ and La$_{2}$SrNi$_{2}$O$_{7}$ closely resemble those of La$_{3}$Ni$_{2}$O$_{7}$ under high pressure, indicating that strong super-exchange interactions between interlayer Ni-$d_{z^2}$ orbitals are preserved. These findings suggest that the doped phases may provide a promising platform for exploring superconductivity, which requires further experimental validation.
|
Received: 04 March 2025
Revised: 25 April 2025
Accepted manuscript online: 29 April 2025
|
|
PACS:
|
74.20.Pq
|
(Electronic structure calculations)
|
| |
74.72.Gh
|
(Hole-doped)
|
| |
31.15.A-
|
(Ab initio calculations)
|
|
| Fund: Y.W. Zhang acknowledges funding from the National Key R&D Program of China (Grant No. 2023YFA1610000), the National Natural Science Foundation of China (Grant No. 12304036), the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515010071), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 23xkjc016). W. Wu acknowledges funding from the National Natural Science Foundation of China (Grant Nos. 12494594 and 12274472). |
Corresponding Authors:
Wei Wu, Yunwei Zhang
E-mail: wuwei69@mail.sysu.edu.cn;zhangyunw@mail.sysu.edu.cn
|
Cite this article:
Lei Shi(石磊), Ying Luo(罗颖), Wei Wu(吴为), and Yunwei Zhang(张云蔚) Theoretical investigation of potential superconductivity in Sr-doped La3Ni2O7 at ambient pressure 2025 Chin. Phys. B 34 077403
|
[1] Li D F, Lee K,Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 7771 [2] Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003 [3] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F and Hwang H Y 2020 Nano Lett. 20 5735 [4] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M and Wang M 2023 Nature 621 7979 [5] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang, Wang N N, Guo H Z and Sun J P 2023 Chin. Phys. Lett. 40 117302 [6] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y and Li R, Smidman M, Wang M, Jiao L and Yuan H Q 2024 Nat. Phys. 20 1269 [7] Gu Y H, Le C C, Yang Z S, Wu X X and Hu J P 2025 Phys. Rev. B 111 174506 [8] Yang Q G, Wang D and Wang Q H 2023 Phys. Rev. B 108 L140505 [9] Lechermann F, Gondolf J, Bötzel S and Eremin I M 2023 Phys. Rev. B 108 L201121 [10] Shen Y, Qin M and Zhang G M 2023 Chin. Phys. Lett. 40 127401 [11] Sakakibara H, Kitamine N, OchiMand Kuroki K 2024 Phys. Rev. Lett. 132 106002 [12] Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R and Si Q M 2023 Phys. Rev. B 108 214522 [13] Yang Y F, Zhang G M and Zhang F C 2023 Phys. Rev. B 108 L201108 [14] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, ZhuWP, Qu Z X, Chen C Q, Huo MW, Huang Y B, Zhang S J, Zhang F F, Yang F,Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L and Zhou X J 2024 Nat. Commun. 15 4373 [15] Chen Y, Tian Y H, Wang J M, He R Q and Lu Z Y 2024 Phys. Rev. B 110 235119 [16] Somayazulu M, Ahart M, Mishra A, Geballe Z, Baldini M, Meng Y, Struzhkin V and Hemley R 2019 Phys. Rev. Lett. 122 027001 [17] Semenok D V, Troyan I A, Ivanova A G, Kvashnin A G, Kruglov I A, Hanfland M, Sadakov A V, Sobolevskiy O A, Pervakov K S, Lyubutin I S, Glazyrin K V, Giordano N, Karimov D N, Vasiliev A L, Akashi R, Pudalov V M and Oganov A R 2021 Materials Today 48 18 [18] Song H, Duan D F, Cui T and Kresin V Z 2020 Phys. Rev. B 102 014510 [19] Lee K, Wang B Y, Osada M, Goodge B H, Wang T C, Lee Y, Harvey S, Kim W J, Yu Y, Murthy C, Raghu S, Kourkoutis L F and Hwang H Y 2023 Nature 619 7969 [20] Leonov I, Skornyakov S L and Savrasov S Y 2020 Phys. Rev. B 101 241108 [21] Liu Z, Xu C, Cao C, Zhu W, Wang Z F and Yang J 2021 Phys. Rev. B 103 045103 [22] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J and Cheng J G 2022 Nat. Commun. 13 4367 [23] Wang N N,Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L,Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y and Cheng J G 2024 Nature 634 579 [24] Wang G, Wang N N, Wang Y X, Shi L F, Shen X L, Hou J, Ma H M, Yang P T, Liu Z Y, Zhang H, Dong X L, Sun J P, Wang B S, Jiang K, Hu J P, Uwatoko Y and Cheng J G 2023 arXiv 2311 08212 [25] Geisler B, Hamlin J J, Stewart G R, Hennig R G and Hirschfeld P 2024 npj Quantum Materials 9 38 [26] Pan Z, Lu C, Yang F and Wu C 2024 Chin. Phys. Lett. 41 087401 [27] Zhang Y, Lin L F, Moreo A, Maier T A and Dagotto E 2023 Phys. Rev. B 108 165141 [28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [29] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15 [30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [31] Löchl P E 1994 Phys. Rev. B 50 17953 [32] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 [33] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [34] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001 [35] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Computer Physics Communications 185 2309 [36] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685 [37] XuMY, Huyan S,Wang H Z, Bud’ko S L, Chen X L, Ke X L, Mitchell J F, Canfield P C, Li J and Xie W W 2024 Advanced Electronic Materials 10 2400078 [38] Luo Z H, Hu X W, Wang M, Wú W and Yao D X 2023 Phys. Rev. Lett. 131 126001 [39] Wú W, Luo Z H, Yao D X and Wang M 2024 Sci. China Phys., Mech. & Astron. 67 117402 [40] Liu Y B, Mei J W, Ye F, Chen W Q and Yang F 2023 Phys. Rev. Lett. 131 236002 [41] Zhang Y, Lin L F, Moreo A, Maier T A and Dagotto E 2024 Nat. Commun. 15 2470 [42] Tian Y H, Chen Y, Wang J M, He R Q and Lu Z Y 2024 Phys. Rev. B 109 165154 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|