|
|
|
Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ revealed by laser-based angle-resolved photoemission spectroscopy |
| Hao Chen(陈浩)1,2,†, Jumin Shi(史聚民)1,2,†, Xiangyu Luo(罗翔宇)1, Yinghao Li(李颖昊)1,2, Yiwen Chen(陈逸雯)1,2, Chaohui Yin(殷超辉)1, Yingjie Shu(束英杰)1,2, Jiuxiang Zhang(张九相)1,2, Taimin Miao(苗泰民)1,2, Bo Liang(梁波)1,2, Wenpei Zhu(朱文培)1,2, Neng Cai(蔡能)1,2, Xiaolin Ren(任晓琳)1,2, Chengtian Lin(林成天)3, Shenjin Zhang(张申金)4, Zhimin Wang(王志敏)4, Fengfeng Zhang(张丰丰)4, Feng Yang(杨峰)4, Qinjun Peng(彭钦军)4, Zuyan Xu(许祖彦)4, Guodong Liu(刘国东)1,2,5, Hanqing Mao(毛寒青)1,2,5, Xintong Li(李昕彤)1,2,5, Lin Zhao(赵林)1,2,5,‡, and X. J. Zhou(周兴江)1,2,5,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany; 4 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 5 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor $\mathrm{Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+\delta}}$ (Bi2223) is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy (ARPES). Bi2223 single crystals with different doping levels are prepared by controlled annealing, which cover the underdoped, optimally-doped and overdoped regions. The electronic phase diagram of Bi2223 is established which describes the $T_{\rm c}$ dependence on the sample doping level. The doping dependence of the nodal Fermi momentum for the outer (OP) and inner (IP) CuO$_2$ planes is determined. Charge distribution imbalance between the OP and IP CuO$_2$ planes is quantified, showing enhanced disparity with increasing doping. Nodal band dispersions demonstrate a prominent kink at $\sim94$ meV in the IP band, attributed to the unique Cu coordination in the IP plane, while a weaker $\sim60$ meV kink is observed in the OP band. The nodal Fermi velocity of both OP and IP bands is nearly constant at $\sim1.62$ eV$\cdot$Å independent of doping. These results provide important information to understand the origin of high $T_{\rm c}$ and superconductivity mechanism in high temperature cuprate superconductors.
|
Received: 22 May 2025
Revised: 22 May 2025
Accepted manuscript online: 23 May 2025
|
|
PACS:
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
| |
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
| |
74.72.-h
|
(Cuprate superconductors)
|
|
| Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12488201 by X.J.Z., 12374066 by L.Z., and 12374154 by X.T.L.), the National Key Research and Development Program of China (Grant Nos. 2021YFA1401800 by X.J.Z., 2022YFA1604200 by L.Z., 2022YFA1403900 by G.D.L. and 2023YFA1406000 by X.T.L.), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000 by X.J.Z.), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301800 by X.J.Z.), the Youth Innovation Promotion Association of CAS (Grant No. Y2021006 by L.Z.), and the Synergetic Extreme Condition User Facility (SECUF). |
Corresponding Authors:
Lin Zhao, X. J. Zhou
E-mail: LZhao@iphy.ac.cn;XJZhou@iphy.ac.cn
|
Cite this article:
Hao Chen(陈浩), Jumin Shi(史聚民), Xiangyu Luo(罗翔宇), Yinghao Li(李颖昊), Yiwen Chen(陈逸雯), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Jiuxiang Zhang(张九相), Taimin Miao(苗泰民), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Xiaolin Ren(任晓琳), Chengtian Lin(林成天), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Xintong Li(李昕彤), Lin Zhao(赵林), and X. J. Zhou(周兴江) Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ revealed by laser-based angle-resolved photoemission spectroscopy 2025 Chin. Phys. B 34 077404
|
[1] Chu C W, Deng L Z and Lv B 2015 Physica C 514 290 [2] Scott B A, Suard E Y, Tsuei C C, Mitzi D B, McGuire T R, Chen B H and Walker D 1994 Physica C 230 239 [3] Chakravarty S, Kee H Y and Völker K 2004 Nature 428 53 [4] Iyo A, Tanaka Y, Kito H, Kodama Y, Shirage P M, Shivagan D D, Matsuhata H, Tokiwa K andWatanabe T 2007 J. Phys. Soc. Jpn. 76 094711 [5] Eisaki H, Kaneko N, Feng D L, Damascelli A, Mang P K, Shen K M, Shen Z X and Greven M 2004 Phys. Rev. B 69 064512 [6] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [7] Fujii T, Terasaki I, Watanabe T and Matsuda A 2002 Phys. Rev. B 66 024507 [8] Piriou A, Fasano Y, Giannini E and Fischer 2008 Phys. Rev. B 77 184508 [9] Feng D L, Damascelli A, Shen K M, Motoyama N, Lu D H, Eisaki H, Shimizu K, Shimoyama J I, Kishio K, Kaneko N, Greven M, Gu G D, Zhou X J, Kim C, Ronning F, Armitage N P and Shen Z X 2002 Phys. Rev. Lett. 88 107001 [10] Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H, Fujita T, Nakashima Y, Ino A, Arita M, Namatame H, Taniguchi M, Ono K, Kubota M, Lu D H, Shen Z X, Kojima K M and Uchida S 2010 Physica C 470 S14 [11] Ideta S, Takashima K, Hashimoto M, Yoshida T, Fujimori A, Anzai H, Fujita T, Nakashima Y, Ino A, Arita M, Namatame H, Taniguchi M, Ono K, Kubota M, Lu D H, Shen Z X, Kojima K M and Uchida S 2010 Phys. Rev. Lett. 104 227001 [12] Ideta S, Yoshida T, Fujimori A, Anzai H, Fujita T, Ino A, Arita M, Namatame H, Taniguchi M, Shen Z X, Takashima K, Kojima K and Uchida S 2012 Phys. Rev. B 85 104515 [13] Ideta S, Yoshida T, Hashimoto M, Fujimori A, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Takashima K, Kojima K M and Uchida S 2013 J. Phys.: Conf. Ser. 428 012039 [14] Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S and Kondo T 2017 Phys. Rev. Lett. 119 217001 [15] Ideta S, Johnston S, Yoshida T, Tanaka K, Mori M, Anzai H, Ino A, Arita M, Namatame H, Taniguchi M, Ishida S, Takashima K, Kojima K M, Devereaux T P, Uchida S and Fujimori A 2021 Phys. Rev. Lett. 127 217004 [16] Luo X Y, Chen H, Li Y H, Gao Q, Yin C H, Yan H T, Miao T M, Luo H L, Shu Y J, Chen Y W, Lin C T, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Liu G D, Zhao L, Xu Z Y, Xiang T and Zhou X J 2023 Nat. Phys. 19 1841 [17] Ideta S, Adachi S, Noji T, Yamaguchi S, Sasaki N, Ishida S, Uchida S, Fujii T, Watanabe T, Wang W O, Moritz B, Devereaux T P, Arita M, Mou C Y, Yoshida T, Tanaka K, Lee T K and Fujimori A 2025 arXiv: 2502.16013 [cond-mat.supr-con] [18] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105 [19] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Rep. Prog. Phys. 81 062101 [20] Lin C T and Liang B 2002 New Trends in Superconductivity (Dordrecht: Springer Netherlands) pp. 19-28 [21] Liang B, Lin C T, Shang P and Yang G 2002 Physica C 383 75 [22] Shimizu K, Okabe T, Horii S, Otzschi K, Shimoyama J and Kishio K 2002 MRS Online Proc. Libr. 689 35 [23] Wei J, Zhang Y, Peng R, Eisaki H and Feng D L 2010 Physica C 470 12 [24] Mukuda H, Shimizu S, Iyo A and Kitaoka Y 2012 J. Phys. Soc. Jpn. 81 011008 [25] Wang Z C, Zou CW, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y and Zhu J 2023 Science 381 227 [26] Bogdanov P V, Lanzara A, Kellar S A, Zhou X J, Lu E D, Zheng W J, Gu G, Shimoyama J I, Kishio K, Ikeda H, Yoshizaki R, Hussain Z and Shen Z X 2000 Phys. Rev. Lett. 85 2581 [27] Johnson P D, Valla T, Fedorov A V, Yusof Z, Wells B O, Li Q, Moodenbaugh A R, Gu G D, Koshizuka N, Kendziora C, Jian S and Hinks D G 2001 Phys. Rev. Lett. 87 177007 [28] Kaminski A, Randeria M, Campuzano J C, Norman M R, Fretwell H, Mesot J, Sato T, Takahashi T and Kadowaki K 2001 Phys. Rev. Lett. 86 1070 [29] Lanzara A, Bogdanov P V, Zhou X J, Kellar S A, Feng D L, Lu E D, Yoshida T, Eisaki H, Fujimori A, Kishio K, Shimoyama J I, Noda T, Uchida S, Hussain Z and Shen Z X 2001 Nature 412 510 [30] Zhou X J, Yoshida T, Lanzara A, Bogdanov P V, Kellar S A, Shen K M, Yang W L, Ronning F, Sasagawa T, Kakeshita T, Noda T, Eisaki H, Uchida S, Lin C T, Zhou F, Xiong JW, TiWX, Zhao Z X, Fujimori A, Hussain Z and Shen Z X 2003 Nature 423 398 [31] Yan H T, Bok J M, He J F, ZhangWT, Gao Q, Luo X Y, Cai Y Q, Peng Y Y, Meng J Q, Li C, Chen H, Song C Y, Yin C H, Miao T M, Chen Y W, Gu G D, Lin C T, Zhang F F, Yang F, Zhang S J, Peng Q J, Liu G D, Zhao L, Choi H Y, Xu Z Y and Zhou X J 2023 Proc. Natl. Acad. Sci. USA 120 e2219491120 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|