Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027102    DOI: 10.1088/1674-1056/ad0ccf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry

Huan Ma(马欢)1,2, Ning Tan(谭宁)1,2, Xuchuan Wu(吴徐传)1,2, Man Li(李满)3, Yiyan Wang(王义炎)4, Hongyan Lu(路洪艳)5,†, Tianlong Xia(夏天龙)1,2,‡, and Shancai Wang(王善才)1,2,§
1 Department of Physics, Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China;
3 School of Information Network Security, People's Public Security University of China, Beijing 100038, China;
4 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
5 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
Abstract  We investigate the electronic structure of NbGeSb with non-symmorphic symmetry. We employ angle-resolved photoemission spectroscopy (ARPES) to observe and identify the bulk and surface states over the Brillouin zone. By utilizing high-energy photons, we identify the bulk Fermi surface and bulk nodal line along the direction $X$-$R$, while the Fermi surface of the surface state is observed by using low-energy photons. We observe the splitting of surface bands away from the high-symmetry point $\overline{{X}}$. The density functional theory calculations on bulk and 1 to 5-layer slab models, as well as spin textures of NbGeSb, verify that the band splitting could be attributed to the Rashba-like spin-orbit coupling caused by space-inversion-symmetry breaking at the surface. These splitted surface bands cross with each other, forming two-dimensional Weyl-like crossings that are protected by mirror symmetry. Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.
Keywords:  non-symmorphic symmetry      nodal line      splitting of surface bands      angle-resolved photoemission spectroscopy  
Received:  22 September 2023      Revised:  13 November 2023      Accepted manuscript online:  16 November 2023
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403803). H. M. is supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 22XNH099). The results of DFT calculations described in this paper are supported by HPC Cluster of ITP-CAS. M. L. is supported by the National Natural Science Foundation of China (Grant No. 12204536), the Fundamental Research Funds for the Central Universities, and the Research Funds of People’s Public Security University of China (PPSUC) (Grant No. 2023JKF02ZK09). T. L. X. is supported by the National Key R&D Program of China (Grant No. 2019YFA0308602) and the National Natural Science Foundation of China (Grant Nos. 12074425 and 11874422). Y. Y. W. is supported by the National Natural Science Foundation of China (Grant No. 12104011). H. Y. L. is supported by the National Natural Science Foundation of China (Grant No. 12074213), the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No. ZR2021ZD01), and the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.
Corresponding Authors:  Hongyan Lu, Tianlong Xia, Shancai Wang     E-mail:  hylu@qfnu.edu.cn;tlxia@ruc.edu.cn;scw@ruc.edu.cn

Cite this article: 

Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才) Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry 2024 Chin. Phys. B 33 027102

[1] Wen X G 2017 Rev. Mod. Phys. 89 041004
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[5] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002
[6] Xu Q, Song Z, Nie S, Weng H, Fang Z and Dai X 2015 Phys. Rev. B 92 205310
[7] Zhao Y X and Schnyder A P 2016 Phys. Rev. B 94 195109
[8] Lou R, Ma J Z, Xu Q N, Fu B B, Kong L Y, Shi Y G, Richard P, Weng H M, Fang Z, Sun S S, Wang Q, Lei H C, Qian T, Ding H and Wang S C 2016 Phys. Rev. B 93 241104
[9] Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S P 2016 Science Advances 2 e1601742
[10] Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2016 Nat. Commun. 7 11696
[11] Wang X, Pan X, Gao M, Yu J, Jiang J, Zhang J, Zuo H, Zhang M, Wei Z, Niu W, Xia Z, Wan X, Chen Y, Song F, Xu Y, Wang B, Wang G and Zhang R 2016 Advanced Electronic Materials 2 1600228
[12] Lodge M S, Chang G, Huang C Y, Singh B, Hellerstedt J, Edmonds M T, Kaczorowski D, Hosen M M, Neupane M, Lin H, Fuhrer M S, Weber B and Ishigami M 2017 Nano Lett. 17 7213
[13] Topp A, Queiroz R, Grüneis A, Müchler L, Rost A W, Varykhalov A, Marchenko D, Krivenkov M, Rodolakis F, McChesney J L, Lotsch B V, Schoop L M and Ast C R 2017 Phys. Rev. X 7 041073
[14] Fu B B, Yi C J, Zhang T T, Caputo M, Ma J Z, Gao X, Lv B Q, Kong L Y, Huang Y B, Richard P, Shi M, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T and Ding H 2019 Science Advances 5 eaau6459
[15] Johnson V and Jeitschko W 1973 Journal of Solid State Chemistry 6 306
[16] Tremel W and Hoffmann R 1987 J. Am. Chem. Soc. 109 124
[17] Guo L, Zhao W, Ding N, Shi X Y, Xu M, Chen L, Gao G Y, Dong S and Zheng R K 2020 J. Phys.: Condens. Matter 32 435701
[18] Murphy K 2020 Quantum oscillation studies in the unconventional superconductor YFe2Ge2 and in the Dirac semimetal candidates NbXSb (X = Ge/Si) Ph. D. thesis (University of Cambridge)
[19] Shao J 2020 Study on First Principle and Electrical Transport of Topological Materials NbGeSb and KHgSb Master's thesis (Harbin Institute of Technology)
[20] Marković I, Hooley C A, Clark O J, Mazzola F,Watson M D, Riley J M, Volckaert K, Underwood K, Dyer M S, Murgatroyd P A E, Murphy K J, Févre P L, Bertran F, Fujii J, Vobornik I, Wu S, Okuda T, Alaria J and King P D C 2019 Nat. Commun. 10 5485
[21] Li W, Song J, Qin Y, Qin P, Ren R, Wang Y, Bai X, Yang X and Cao C 2022 Phys. Lett. A 446 128277
[22] Seah M P and Dench W A 1979 Surface and Interface Analysis 1 2
[23] Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T and Zhou S 2022 Nature Reviews Methods Primers 2 54
[24] Blochl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27] Kresse G and Furthmuller J 1996 Computational Materials Science 6 15
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Momma K and Izumi F 2011 Journal of Applied Crystallography 44 1272
[31] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Computer Physics Communications 267 108033
[32] Kawamura M 2019 Computer Physics Communications 239 197
[33] Jain A, Hautier G, Moore C J, Ping Ong S, Fischer C C, Mueller T, Persson K A and Ceder G 2011 Computational Materials Science 50 2295
[34] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Computational Materials Science 68 314
[35] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Materials 1 011002
[36] Takane D, Wang Z, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T and Ando Y 2016 Phys. Rev. B 94 121108
[37] Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F, Hasan M Z and Durakiewicz T 2016 Phys. Rev. B 93 201104
[1] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[2] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[3] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[4] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[5] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[6] Straight and twisted Weyl nodal line phonons in Ho2CF2 material
Xin-Yue Kang(康鑫越), Jin-Yang Li(李金洋), and Si Li(李思). Chin. Phys. B, 2023, 32(11): 116301.
[7] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[8] Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions
Qin Wang(汪琴), Jie Zhang(张杰), Jierui Huang(黄杰瑞), Jinan Shi(时金安), Shuai Zhang(张帅), Hui Guo(郭辉), Li Huang(黄立), Hong Ding(丁洪), Wu Zhou(周武), Yan-Fang Zhang(张艳芳), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(1): 016102.
[9] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Spin—orbit stable dirac nodal line in monolayer B6O
Wen-Rong Liu(刘文荣), Liang Zhang(张亮), Xiao-Jing Dong(董晓晶), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(3): 037305.
[12] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[13] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[14] Magnetic impurity in hybrid and type-II nodal line semimetals
Xiao-Rong Yang(杨晓容), Zhen-Zhen Huang(黄真真), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2021, 30(6): 067103.
[15] Quantization of the band at the surface of charge density wave material 2H-TaSe2
Man Li(李满), Nan Xu(徐楠), Jianfeng Zhang(张建丰), Rui Lou(娄睿), Ming Shi(史明), Lijun Li(黎丽君), Hechang Lei(雷和畅), Cedomir Petrovic, Zhonghao Liu(刘中灏), Kai Liu(刘凯), Yaobo Huang(黄耀波), and Shancai Wang(王善才). Chin. Phys. B, 2021, 30(4): 047305.
No Suggested Reading articles found!