Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087401    DOI: 10.1088/1674-1056/ad48f9
RAPID COMMUNICATION Prev   Next  

Manipulation of band gap in 1T-TiSe2 via rubidium deposition

Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱)†
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  The 1$T$-TiSe$_{2}$ is a two-dimensional charge-density-wave (CDW) material that attracts great interest. A small band gap locates at the Fermi level separating the Ti d-bands and Se p-bands, which makes 1$T$-TiSe$_{2}$ a promising candidate for realizing excitonic condensation. Here, we studied the band gap in 1$T$-TiSe$_{2 }$ using angle-resolved photoemission spectroscopy (ARPES). Instead of only focusing on the in-plane band dispersions, we obtained the detailed band dispersions of both conduction and valance bands along the out-of-plane direction. We found that the conduction and valance bands split into multiple sub-bands in the CDW state due to band folding. As a result, the band gap between the Ti d-bands and Se p-bands reduces to $\sim 25 $ meV and becomes a direct gap in the CDW state. More intriguingly, such band gap can be further reduced by the rubidium deposition. The band structure becomes semimetallic in the rubidium-doped sample. Meanwhile, exotic gapless behaviors were observed at the p-d band crossing. Our result characterized the band gap of 1$T$-TiSe$_{2}$ in three-dimensional Brillouin zone with unpreceded precision. It also suggests a closing of band gap or a potential band inversion in 1$T$-TiSe$_{2}$ driven by rubidium deposition.
Keywords:  angle-resolved photoemission spectroscopy      metal-insulator transition      transition metal dichalcogenides  
Received:  08 March 2024      Revised:  24 April 2024      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.70.Xa (Pnictides and chalcogenides)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403502 and 2018YFA0305602) and the National Natural Science Foundation of China (Grant No. 11888101). The work at SSRF is supported by ME2 project under contract No. 11227901 from the National Natural Science Foundation of China.
Corresponding Authors:  Yan Zhang     E-mail:  yzhang85@pku.edu.cn

Cite this article: 

Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱) Manipulation of band gap in 1T-TiSe2 via rubidium deposition 2024 Chin. Phys. B 33 087401

[1] Capasso F 1987 Science 235 172
[2] Chaves A, Azadani J G, Alsalman H, et al. 2020 npj 2D Mater. Appl. 4 29
[3] Coduri M, Shiell T B, Strobel T A, et al. 2020 Mater. Adv. 1 2840
[4] Zeng M, Liu J, Zhou L, et al. 2020 Nat. Mater. 19 528
[5] Choi W S, Chisholm M F and Singh D J 2012 Nat. Commun. 3 689
[6] Ishigami M, Sau J D, Aloni S, Cohen M L and Zettl A 2005 Phys. Rev. Lett. 94 056804
[7] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325
[8] Kang M, Kim B, Ryu S H, et al. 2017 Nano Lett. 17 1610
[9] Kim J, Baik S S, Ryu S H, et al. 2015 Science 349 723
[10] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193
[11] Di Salvo F J, Moncton D E and Waszczak J V 1976 Phys. Rev. B 14 4321
[12] Morosan E, Zandbergen H W, Dennis B S, et al. 2006 Nat. Phys. 2 544
[13] Kogar A, Rak M S, Vig S, et al. 2017 Science 358 1314
[14] Fang C M, Groot D R A and Haas C 1997 Phys. Rev. B 56 4455
[15] Money C, Cercellier H, Clerc F, et al. 2009 Phys. Rev. B 79 045116
[16] Zhao J F, Ou H W, Wu G, et al. 2007 Phys. Rev. Lett. 99 146401
[17] Watson M D, Clark O J, Mazzola F, et al. 2019 Phys. Rev. Lett. 122 076404
[18] Cercellier H, Monney C, Clerc F, et al. 2007 Phys. Rev. Lett. 99 146403
[19] Pillo T, Hayoz J, Berger H, Levy F, Schlapbach L and Aebi P 2000 Phys. Rev. B 61 16213
[20] Kohn W 1967 Phys. Rev. Lett. 19 439
[21] Bronold F X and Fehske H 2006 Phys. Rev. B 74 165107
[22] Zhu L, Zhao W M, Jia Z Y, et al. 2023 Chin. Phys. Lett. 40 057101
[23] Chen L, Han T T, Cai C, et al. 2020 Phys. Rev. B 102 161116
[24] Riley J M, Meevasana W, Bawden L, et al. 2015 Nat. Nanotech. 10 1043
[25] Rossnagel K, Kipp L, Skibowski M, et al. 2002 Phys. Rev. B 65 235101
[26] Wegner A, Zhao J, Li J, et al. 2020 Phys. Rev. B 101 195145
[1] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[2] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[3] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[4] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[5] Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4
Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(4): 047104.
[6] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[7] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[8] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[9] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[10] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[11] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[12] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[13] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[14] Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2023, 32(10): 107308.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!