Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047104    DOI: 10.1088/1674-1056/ad2a79
RAPID COMMUNICATION Prev   Next  

Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4

Qingxin Liu(刘清馨)1,2,†, Yang Fu(付阳)1,2,†, Pengfei Ding(丁鹏飞)1,2, Huan Ma(马欢)1,2, Pengjie Guo(郭朋杰)1,2,‡, Hechang Lei(雷和畅)1,2,§, and Shancai Wang(王善才)1,2,¶
1 Department of Physics, Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China;
2 Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices, Renmin University of China, Beijing 100872, China
Abstract  Using angle-resolved photoemission spectroscopy and density functional theory calculations methods, we investigate the electronic structures and topological properties of ternary tellurides NbIrTe4, a candidate for type-II Weyl semimetal. We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material. Our analysis reveals the existence of Dirac points, in addition to Weyl points, giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material. These findings not only confirm NbIrTe4 as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.
Keywords:  Fermi arc      Weyl point      Dirac point      angle-resolved photoemission spectroscopy  
Received:  25 January 2024      Revised:  18 February 2024      Accepted manuscript online:  19 February 2024
PACS:  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274455, 12274459, and 12204533), the National Key R&D Program of China (Grant No. 2022YFA1403800), and the Beijing Natural Science Foundation (Grant No. Z200005).
Corresponding Authors:  Pengjie Guo, Hechang Lei, Shancai Wang     E-mail:  guopengjie@ruc.edu.cn;hlei@ruc.edu.cn;scw@ruc.edu.cn

Cite this article: 

Qingxin Liu(刘清馨), Yang Fu(付阳), Pengfei Ding(丁鹏飞), Huan Ma(马欢), Pengjie Guo(郭朋杰), Hechang Lei(雷和畅), and Shancai Wang(王善才) Coexistence of Dirac and Weyl points in non-centrosymmetric semimetal NbIrTe4 2024 Chin. Phys. B 33 047104

[1] Nielsen H B and Ninomiya M 1983 Phys. Rev. B 130 389
[2] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, et al. 2015 Nat. Phys. 11 645
[3] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, et al. 2015 Phys. Rev. X 5 031023
[4] Gorbar E, Miransky V and Shovkovy I 2014 Phys. Rev. B 89 085126
[5] Armitage N, Mele E and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[6] Hasan M Z, Xu S Y, Belopolski I and Huang S M 2017 Annu. Rev. Condens. Matter Phys. 8 289
[7] Vafek O and Vishwanath A 2014 Annu. Rev. Condens. Matter Phys. 5 83
[8] Young S M, Zaheer S, Teo J C, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[9] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[10] Burkov A and Balents L 2011 Phys. Rev. Lett. 107 127205
[11] Witczak-Krempa W and Kim Y B 2012 Phys. Rev. B 85 045124
[12] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[13] Sun Y, Wu S C, Ali M N, Felser C and Yan B 2015 Phys. Rev. B 92 161107
[14] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
[15] Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402
[16] Koepernik K, Kasinathan D, Efremov D, Khim S, Borisenko S, Büchner B and van den Brink J 2016 Phys. Rev. B 93 201101
[17] Li L, Xie H H, Zhao J S, Liu X X, Deng J B, Hu X R and Tao X M 2017 Phys. Rev. B 96 024106
[18] Liu J, Wang H, Fang C, Fu L and Qian X 2017 Nano Lett. 17 467
[19] Lau A, Koepernik K, van den Brink J and Ortix C 2017 Phys. Rev. Lett. 119 076801
[20] Gao H, Kim Y, Venderbos J W, Kane C, Mele E, Rappe A M and Ren W 2018 Phys. Rev. Lett. 121 106404
[21] Meng L, Wu J, Li Y and Zhong J 2019 J. Mater. Chem. C 7 12151
[22] Wang Z, Huang C Y, Hsu C H, Namiki H, Chang T R, Chuang F C, Lin H, Sasagawa T, Madhavan V and Okada Y 2022 Phys. Rev. B 105 075110
[23] Huang X W, Liu X X, Yu P, Li P L, Cui J, Yi J, Deng J B, Fan J, Ji Z Q, Qu F M, et al. 2019 Chin. Phys. Lett. 36 077101
[24] Ekahana S A, Li Y W, Sun Y, Namiki H, Yang H F, Jiang J, Yang L X, Shi W J, Zhang C F, Pei D, Chen C, Sasagawa T, Felser C, Yan B H, Liu Z K and Chen Y L 2020 Phys. Rev. B 102 085126
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[32] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[33] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Computer Physics Communications 224 405
[34] Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[35] Bulmash D and Qi X L 2016 Phys. Rev. B 93 081103
[36] Moll P J, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J G 2016 Nature 535 266
[1] Angle-resolved photoemission study of NbGeSb with non-symmorphic symmetry
Huan Ma(马欢), Ning Tan(谭宁), Xuchuan Wu(吴徐传), Man Li(李满), Yiyan Wang(王义炎), Hongyan Lu(路洪艳), Tianlong Xia(夏天龙), and Shancai Wang(王善才). Chin. Phys. B, 2024, 33(2): 027102.
[2] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[3] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[4] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[5] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[6] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[7] Topological states switching and group velocity control in two-dimensional non-reciprocal Hermitian photonic lattice
Yu Lin(林宇), Yuandan Wang(王元旦), Junhao Yang(杨俊豪), Yixuan Fu(符艺萱), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114213.
[8] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[9] Photonic Dirac cone and topological transition in a moving dielectric slab
Xinyang Pan(潘昕阳), Haitao Li(李海涛), Weijie Dong(董为杰), Xiaoxi Zhou(周萧溪), Gang Wang(王钢), and Bo Hou(侯波). Chin. Phys. B, 2023, 32(10): 107802.
[10] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[11] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[12] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[13] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[14] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[15] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
No Suggested Reading articles found!