Abstract The behaviors of m f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion (HF) systems. The complicated interactions between m f electrons and conduction electrons largely enrich the basic properties of HF compounds. Here the electronic structure, especially the m f-electron character, of the charge-density-wave (CDW) Kondo lattice compound CeTe3 has been studied by high-resolution angle-resolved photoemission spectroscopy. A weakly dispersive quasiparticle band near the Fermi level has been observed directly, indicating hybridization between m f electrons and conduction electrons. Temperature-dependent measurements confirm the localized to itinerant transition of m f electrons as the temperature decreases. Furthermore, an energy gap formed by one conduction band at low temperature is gradually closed with increasing temperature, which probably originates from the CDW transition at extremely high temperature. Additionally, orbital information of different electrons has also been acquired with different photon energies and polarizations, which indicates the anisotropy and diverse symmetries of the orbitals. Our results may help understand the complicated m f-electron behaviors when considering its interaction with other electrons/photons in CeTe3 and other related compounds.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12122409, 11874330, 11904334, 12004349, and 11904335), the National Key Research and Development Program of China (Grants Nos. 2022YFA1402201 and 2021YFA1601100), and the BL03U and BL09U ARPES beam line of Shanghai Synchrotron Radiation Facility (SSRF, China).
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云) Electronic structure study of the charge-density-wave Kondo lattice CeTe3 2023 Chin. Phys. B 32 097103
[1] Stewart G R 1984 Rev. Mod. Phys.56 755 [2] Pfleiderer C 2009 Rev. Mod. Phys.81 1551 [3] Yang Y F and Pines D 2008 Phys. Rev. Lett.100 096404 [4] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F 2011 Nat. Phys.7 119 [5] Shim J H, Haule K and Kotliar G 2007 Science318 1615 [6] Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P and Komatsubara T 2001 Nature410 340 [7] Zhang Y, Feng W, Lou X, Yu T L, Zhu X G, Tan S Y, Yuan B K, Liu Y, Lu H Y, Xie D H, Liu Q, Zhang W, Luo X B, Huang Y B, Luo L Z, Zhang Z J, Lai X C and Chen Q Y 2018 Phys. Rev. B97 045128 [8] Varma C M 1976 Rev. Mod. Phys.48 219 [9] Doniach S 1977 Physica B+C91 231 [10] Brouet V, Yang W L, Zhou X J, Hussain Z, Ru N, Shin K Y, Fisher I R and Shen Z X 2004 Phys. Rev. Lett.93 126405 [11] Shin K Y, Brouet V, Ru N, Shen Z X and Fisher I R 2005 Phys. Rev. B72 085132 [12] Hamlin J J, Zocco D A, Sayles T A, Maple M B, Chu J H and Fisher I R 2009 Phys. Rev. Lett.102 177002 [13] Zocco D A, Hamlin J J, Grube K, Chu J H, Kuo H H, Fisher I R and Maple M B 2015 Phys. Rev. B91 205114 [14] Iyeiri Y, Okumura T, Michioka C and Suzuki K 2003 Phys. Rev. B67 144417 [15] Tomic A, Rak Zs, Veazey J P, Malliakas C D, Mahanit S D, Kanatzidis M G and Tessmer S H 2009 Phys. Rev. B79 085422 [16] Malliakas C D and Kanatzidis M G 2006 J. Am. Chem. Soc.128 12612 [17] Ru N and Fisher I R 2006 Phys. Rev. B73 033101 [18] Chudo H, Michioka C, Itoh Y and Yoshimura K 2007 J. Magn. Magn. Mater.310 1105 [19] Chudo H, Michioka C, Itoh Y and Yoshimura K 2007 Phys. Rev. B75 045113 [20] Gweon G H, Denlinger J D, Clack J A, Allen J W, Olson C G, DiMasi E, Aronson M C, Foran B and Lee S 1998 Phys. Rev. Lett.81 886 [21] Ralević U, Lazarević N, Baum A, Eiter H M, Hackl R, Giraldo-Gallo P, Fisher I R, Petrovic C, Gajić R, Popović Z V 2016 Phys. Rev. B94 165132 [22] Komoda H, Sato T, Souma S, Takahashi T, Ito Y and Suzuki K 2004 Phys. Rev. B70 195101 [23] Leuenberger D, Sobota J A, Yang S L, Kemper A F, Giraldo-Gallo P, Moore R G, Fisher I R, Kirchmann P S, Devereaux T P and Shen Z X 2015 Phys. Rev. B91 201106 [24] DiMasi E, Foran B, Aronson M C and Lee S 1994 Chem. Mater.6 1867 [25] Deguchi K, Okada T, Chen G F, Ban S, Aso N and Sato N K 2009 J. Phys.: Conf. Ser.150 042023 [26] Chen D, Zhang S, Yang H X, Li J Q and Chen G F 2017 J. Phys.: Condens. Matter29 265803 [27] Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N and Fisher I R 2008 Phys. Rev. B77 235104 [28] Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, and Feng D L 2017 Phys. Rev. B96 045107 [29] Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S and Feng D L 2018 Phys. Rev. B97 075149 [30] Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S and Feng D L 2018 Phys. Rev. Lett.120 066403 [31] Fujimori S I, Fujimori A, Shimada K, Narimura T, Kobayashi K, Namatame H, Taniguchi M, Harima H, Shishido H, Ikeda S, Aoki D, Tokiwa Y, Haga Y and Ōnuki Y 2006 Phys. Rev. B73 224517 [32] Kim H D, Tjernberg O, Chiaia G, Kumigashira H, Takahashi T, Duó L, Sakai O, Kasaya M and Lindau I 1997 Phys. Rev. B56 1620 [33] Im H J, Ito T, Kim H D, Kimura S, Lee K E, Hong J B, Kwon Y S, Yasui A and Yamagami H 2008 Phys. Rev. Lett.100 176402 [34] Zhang K N, Liu X Y, Zhang H X, Deng K, Yan M Z, Yao W, Zheng M T, Schwier E F, Shimada K, Denlinger J D, Wu Y, Duan W H and Zhou S Y 2018 Phys. Rev. Lett.121 206402 [35] Wang Y, Ren J H, Li J H, Wang Y J, Peng H N, Yu P, Duan W H and Zhou S Y 2019 Phys. Rev. B100 241404 [36] Lv B Q, Qian T and Ding H 2019 Nat. Rev. Phys.1 609 [37] Yeh J J and Lindau I 1985 At. Data Nucl. Data Tables32 1 [38] Fujimori S I, Saitoh Y, Okane T, Fujimori A, Yamagami H, Haga Y, Yamamoto E and Ōnuki Y 2007 Nat. Phys.3 618 [39] Bittar E M, Adriano C, Giles C, Rettori C, Fisk Z and Pagliuso P G 2012 Phys. Rev. B86 125108 [40] Koizumi A, Motoyama G, Kubo Y, Tanaka T, Itou M and Sakurai Y 2011 Phys. Rev. Lett.106 136401 [41] Mende M, Ali K, Poelchen G, Schulz S, Mandic V, Tarasov A V, Polley C, Generalov A, Fedorov A V, Güttler M, Laubschat C, Kliemt K, Koroteev Y M, Chulkov E V, Kummer K, Krellner C, Usachov D Y and Vyalikh D V 2022 Adv. Electron. Mater.8 2100768 [42] Patil S, Generalov A, Güttler M, Kushwaha P, Chikina A, Kummer K, Rödel T C, Santander-Syro A F, Caroca-Canales N, Geibel C, Danzenbächer S, Kucherenko Y, Laubschat C, Allen J W and Vyalikh D V 2016 Nat. Commun.7 11029 [43] Poelchen G, Schulz S, Mende M, Güttler M, Generalov A, Fedorov A V, Caroca-Canales N, Geibel C, Kliemt K, Krellner C, Danzenbächer S, Usachov D Y, Dudin P, Antonov V, Allen J, Laubschat C, Kummer K, Kucherenko Y and Vyalikh D 2020 npj Quantum Mater.5 70
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.