Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097103    DOI: 10.1088/1674-1056/acb41e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure study of the charge-density-wave Kondo lattice CeTe3

Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云)§
Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
Abstract  The behaviors of m f electrons are crucial for understanding the rich phase diagrams and ground-state properties of heavy fermion (HF) systems. The complicated interactions between m f electrons and conduction electrons largely enrich the basic properties of HF compounds. Here the electronic structure, especially the m f-electron character, of the charge-density-wave (CDW) Kondo lattice compound CeTe3 has been studied by high-resolution angle-resolved photoemission spectroscopy. A weakly dispersive quasiparticle band near the Fermi level has been observed directly, indicating hybridization between m f electrons and conduction electrons. Temperature-dependent measurements confirm the localized to itinerant transition of m f electrons as the temperature decreases. Furthermore, an energy gap formed by one conduction band at low temperature is gradually closed with increasing temperature, which probably originates from the CDW transition at extremely high temperature. Additionally, orbital information of different electrons has also been acquired with different photon energies and polarizations, which indicates the anisotropy and diverse symmetries of the orbitals. Our results may help understand the complicated m f-electron behaviors when considering its interaction with other electrons/photons in CeTe3 and other related compounds.
Keywords:  4f-electron      charge-density-wave      electronic structure      angle-resolved photoemission spectroscopy  
Received:  17 October 2022      Revised:  25 December 2022      Accepted manuscript online:  18 January 2023
PACS:  71.20.Eh (Rare earth metals and alloys)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.45.Lr (Charge-density-wave systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12122409, 11874330, 11904334, 12004349, and 11904335), the National Key Research and Development Program of China (Grants Nos. 2022YFA1402201 and 2021YFA1601100), and the BL03U and BL09U ARPES beam line of Shanghai Synchrotron Radiation Facility (SSRF, China).
Corresponding Authors:  Yun Zhang, Qiuyun Chen     E-mail:  thu_zhangyun@126.com;sheqiuyun@126.com

Cite this article: 

Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云) Electronic structure study of the charge-density-wave Kondo lattice CeTe3 2023 Chin. Phys. B 32 097103

[1] Stewart G R 1984 Rev. Mod. Phys. 56 755
[2] Pfleiderer C 2009 Rev. Mod. Phys. 81 1551
[3] Yang Y F and Pines D 2008 Phys. Rev. Lett. 100 096404
[4] Stockert O, Arndt J, Faulhaber E, Geibel C, Jeevan H S, Kirchner S, Loewenhaupt M, Schmalzl K, Schmidt W, Si Q and Steglich F 2011 Nat. Phys. 7 119
[5] Shim J H, Haule K and Kotliar G 2007 Science 318 1615
[6] Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P and Komatsubara T 2001 Nature 410 340
[7] Zhang Y, Feng W, Lou X, Yu T L, Zhu X G, Tan S Y, Yuan B K, Liu Y, Lu H Y, Xie D H, Liu Q, Zhang W, Luo X B, Huang Y B, Luo L Z, Zhang Z J, Lai X C and Chen Q Y 2018 Phys. Rev. B 97 045128
[8] Varma C M 1976 Rev. Mod. Phys. 48 219
[9] Doniach S 1977 Physica B+C 91 231
[10] Brouet V, Yang W L, Zhou X J, Hussain Z, Ru N, Shin K Y, Fisher I R and Shen Z X 2004 Phys. Rev. Lett. 93 126405
[11] Shin K Y, Brouet V, Ru N, Shen Z X and Fisher I R 2005 Phys. Rev. B 72 085132
[12] Hamlin J J, Zocco D A, Sayles T A, Maple M B, Chu J H and Fisher I R 2009 Phys. Rev. Lett. 102 177002
[13] Zocco D A, Hamlin J J, Grube K, Chu J H, Kuo H H, Fisher I R and Maple M B 2015 Phys. Rev. B 91 205114
[14] Iyeiri Y, Okumura T, Michioka C and Suzuki K 2003 Phys. Rev. B 67 144417
[15] Tomic A, Rak Zs, Veazey J P, Malliakas C D, Mahanit S D, Kanatzidis M G and Tessmer S H 2009 Phys. Rev. B 79 085422
[16] Malliakas C D and Kanatzidis M G 2006 J. Am. Chem. Soc. 128 12612
[17] Ru N and Fisher I R 2006 Phys. Rev. B 73 033101
[18] Chudo H, Michioka C, Itoh Y and Yoshimura K 2007 J. Magn. Magn. Mater. 310 1105
[19] Chudo H, Michioka C, Itoh Y and Yoshimura K 2007 Phys. Rev. B 75 045113
[20] Gweon G H, Denlinger J D, Clack J A, Allen J W, Olson C G, DiMasi E, Aronson M C, Foran B and Lee S 1998 Phys. Rev. Lett. 81 886
[21] Ralević U, Lazarević N, Baum A, Eiter H M, Hackl R, Giraldo-Gallo P, Fisher I R, Petrovic C, Gajić R, Popović Z V 2016 Phys. Rev. B 94 165132
[22] Komoda H, Sato T, Souma S, Takahashi T, Ito Y and Suzuki K 2004 Phys. Rev. B 70 195101
[23] Leuenberger D, Sobota J A, Yang S L, Kemper A F, Giraldo-Gallo P, Moore R G, Fisher I R, Kirchmann P S, Devereaux T P and Shen Z X 2015 Phys. Rev. B 91 201106
[24] DiMasi E, Foran B, Aronson M C and Lee S 1994 Chem. Mater. 6 1867
[25] Deguchi K, Okada T, Chen G F, Ban S, Aso N and Sato N K 2009 J. Phys.: Conf. Ser. 150 042023
[26] Chen D, Zhang S, Yang H X, Li J Q and Chen G F 2017 J. Phys.: Condens. Matter 29 265803
[27] Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N and Fisher I R 2008 Phys. Rev. B 77 235104
[28] Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, and Feng D L 2017 Phys. Rev. B 96 045107
[29] Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S and Feng D L 2018 Phys. Rev. B 97 075149
[30] Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S and Feng D L 2018 Phys. Rev. Lett. 120 066403
[31] Fujimori S I, Fujimori A, Shimada K, Narimura T, Kobayashi K, Namatame H, Taniguchi M, Harima H, Shishido H, Ikeda S, Aoki D, Tokiwa Y, Haga Y and Ōnuki Y 2006 Phys. Rev. B 73 224517
[32] Kim H D, Tjernberg O, Chiaia G, Kumigashira H, Takahashi T, Duó L, Sakai O, Kasaya M and Lindau I 1997 Phys. Rev. B 56 1620
[33] Im H J, Ito T, Kim H D, Kimura S, Lee K E, Hong J B, Kwon Y S, Yasui A and Yamagami H 2008 Phys. Rev. Lett. 100 176402
[34] Zhang K N, Liu X Y, Zhang H X, Deng K, Yan M Z, Yao W, Zheng M T, Schwier E F, Shimada K, Denlinger J D, Wu Y, Duan W H and Zhou S Y 2018 Phys. Rev. Lett. 121 206402
[35] Wang Y, Ren J H, Li J H, Wang Y J, Peng H N, Yu P, Duan W H and Zhou S Y 2019 Phys. Rev. B 100 241404
[36] Lv B Q, Qian T and Ding H 2019 Nat. Rev. Phys. 1 609
[37] Yeh J J and Lindau I 1985 At. Data Nucl. Data Tables 32 1
[38] Fujimori S I, Saitoh Y, Okane T, Fujimori A, Yamagami H, Haga Y, Yamamoto E and Ōnuki Y 2007 Nat. Phys. 3 618
[39] Bittar E M, Adriano C, Giles C, Rettori C, Fisk Z and Pagliuso P G 2012 Phys. Rev. B 86 125108
[40] Koizumi A, Motoyama G, Kubo Y, Tanaka T, Itou M and Sakurai Y 2011 Phys. Rev. Lett. 106 136401
[41] Mende M, Ali K, Poelchen G, Schulz S, Mandic V, Tarasov A V, Polley C, Generalov A, Fedorov A V, Güttler M, Laubschat C, Kliemt K, Koroteev Y M, Chulkov E V, Kummer K, Krellner C, Usachov D Y and Vyalikh D V 2022 Adv. Electron. Mater. 8 2100768
[42] Patil S, Generalov A, Güttler M, Kushwaha P, Chikina A, Kummer K, Rödel T C, Santander-Syro A F, Caroca-Canales N, Geibel C, Danzenbächer S, Kucherenko Y, Laubschat C, Allen J W and Vyalikh D V 2016 Nat. Commun. 7 11029
[43] Poelchen G, Schulz S, Mende M, Güttler M, Generalov A, Fedorov A V, Caroca-Canales N, Geibel C, Kliemt K, Krellner C, Danzenbächer S, Usachov D Y, Dudin P, Antonov V, Allen J, Laubschat C, Kummer K, Kucherenko Y and Vyalikh D 2020 npj Quantum Mater. 5 70
[1] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[2] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[3] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
[4] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[5] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[6] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[7] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] Intrinsic electronic structure and nodeless superconducting gap of YBa2Cu3O7-δ observed by spatially-resolved laser-based angle resolved photoemission spectroscopy
Shuaishuai Li(李帅帅), Taimin Miao(苗泰民), Chaohui Yin(殷超辉), Yinghao Li(李颖昊), Hongtao Yan(闫宏涛), Yiwen Chen(陈逸雯), Bo Liang(梁波), Hao Chen(陈浩), Wenpei Zhu(朱文培), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Chengtian Lin(林成天), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Lin Zhao(赵林), and X J Zhou(周兴江). Chin. Phys. B, 2023, 32(11): 117401.
[10] Rubidium-induced phase transitions among metallic, band-insulating, Mott-insulating phases in 1T-TaS2
Zhengguo Wang(王政国), Weiliang Yao(姚伟良), Yudi Wang(王宇迪), Ziming Xin(信子鸣), Tingting Han(韩婷婷), Lei Chen(陈磊), Yi Ou(欧仪), Yu Zhu(朱玉), Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(张焱). Chin. Phys. B, 2023, 32(10): 107404.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!