Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077403    DOI: 10.1088/1674-1056/add1bd
Special Issue: SPECIAL TOPIC — Superconductivity in nickel oxides
SPECIAL TOPIC — Superconductivity in nickel oxides Prev   Next  

Theoretical investigation of potential superconductivity in Sr-doped La3Ni2O7 at ambient pressure

Lei Shi(石磊)1, Ying Luo(罗颖)1, Wei Wu(吴为)1,2,†, and Yunwei Zhang(张云蔚)1,2,‡
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, Sun Yat-sen University, Guangzhou 510275, China
Abstract  The recent discovery of pressure-induced superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ has established a novel platform for studying unconventional superconductors. However, achieving superconductivity in this system currently requires relatively high pressures. In this study, we propose a chemical pressure strategy via Sr substitution to stabilize high-$T_{\rm c}$ superconductivity in La$_{3}$Ni$_{2}$O$_{7}$ under ambient conditions. Using density functional theory (DFT) calculations, we systematically investigate the structural and electronic properties of Sr-doped La$_{3-x}$Sr$_{x}$Ni$_{2}$O$_{7}$ ($x= 0.25$, 0.5, 1) at ambient pressure and identify two dynamically stable phases: La$_{2.5}$Sr$_{0.5}$Ni$_{2}$O$_{7}$ and La$_{2}$SrNi$_{2}$O$_{7}$. Our calculations reveal that both phases exhibit metallization of the $\sigma $-bonding bands dominated by Ni-d$_{z^2}$ orbitals - a key feature associated with high-$T_{\rm c} $ superconductivity, as reported in the high-pressure phase of La$_{3}$Ni$_{2}$O$_{7}$. Further analysis using tight-binding models shows that the key hopping parameters in La$_{2.5}$Sr$_{0.5}$Ni$_{2}$O$_{7}$ and La$_{2}$SrNi$_{2}$O$_{7}$ closely resemble those of La$_{3}$Ni$_{2}$O$_{7}$ under high pressure, indicating that strong super-exchange interactions between interlayer Ni-$d_{z^2}$ orbitals are preserved. These findings suggest that the doped phases may provide a promising platform for exploring superconductivity, which requires further experimental validation.
Keywords:  superconducting nickelate      ab initio calculations      electronic structure      hole-doped  
Received:  04 March 2025      Revised:  25 April 2025      Accepted manuscript online:  29 April 2025
PACS:  74.20.Pq (Electronic structure calculations)  
  74.72.Gh (Hole-doped)  
  31.15.A- (Ab initio calculations)  
Fund: Y.W. Zhang acknowledges funding from the National Key R&D Program of China (Grant No. 2023YFA1610000), the National Natural Science Foundation of China (Grant No. 12304036), the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515010071), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 23xkjc016). W. Wu acknowledges funding from the National Natural Science Foundation of China (Grant Nos. 12494594 and 12274472).
Corresponding Authors:  Wei Wu, Yunwei Zhang     E-mail:  wuwei69@mail.sysu.edu.cn;zhangyunw@mail.sysu.edu.cn

Cite this article: 

Lei Shi(石磊), Ying Luo(罗颖), Wei Wu(吴为), and Yunwei Zhang(张云蔚) Theoretical investigation of potential superconductivity in Sr-doped La3Ni2O7 at ambient pressure 2025 Chin. Phys. B 34 077403

[1] Li D F, Lee K,Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 7771
[2] Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003
[3] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F and Hwang H Y 2020 Nano Lett. 20 5735
[4] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M and Wang M 2023 Nature 621 7979
[5] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang, Wang N N, Guo H Z and Sun J P 2023 Chin. Phys. Lett. 40 117302
[6] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y and Li R, Smidman M, Wang M, Jiao L and Yuan H Q 2024 Nat. Phys. 20 1269
[7] Gu Y H, Le C C, Yang Z S, Wu X X and Hu J P 2025 Phys. Rev. B 111 174506
[8] Yang Q G, Wang D and Wang Q H 2023 Phys. Rev. B 108 L140505
[9] Lechermann F, Gondolf J, Bötzel S and Eremin I M 2023 Phys. Rev. B 108 L201121
[10] Shen Y, Qin M and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[11] Sakakibara H, Kitamine N, OchiMand Kuroki K 2024 Phys. Rev. Lett. 132 106002
[12] Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R and Si Q M 2023 Phys. Rev. B 108 214522
[13] Yang Y F, Zhang G M and Zhang F C 2023 Phys. Rev. B 108 L201108
[14] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, ZhuWP, Qu Z X, Chen C Q, Huo MW, Huang Y B, Zhang S J, Zhang F F, Yang F,Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L and Zhou X J 2024 Nat. Commun. 15 4373
[15] Chen Y, Tian Y H, Wang J M, He R Q and Lu Z Y 2024 Phys. Rev. B 110 235119
[16] Somayazulu M, Ahart M, Mishra A, Geballe Z, Baldini M, Meng Y, Struzhkin V and Hemley R 2019 Phys. Rev. Lett. 122 027001
[17] Semenok D V, Troyan I A, Ivanova A G, Kvashnin A G, Kruglov I A, Hanfland M, Sadakov A V, Sobolevskiy O A, Pervakov K S, Lyubutin I S, Glazyrin K V, Giordano N, Karimov D N, Vasiliev A L, Akashi R, Pudalov V M and Oganov A R 2021 Materials Today 48 18
[18] Song H, Duan D F, Cui T and Kresin V Z 2020 Phys. Rev. B 102 014510
[19] Lee K, Wang B Y, Osada M, Goodge B H, Wang T C, Lee Y, Harvey S, Kim W J, Yu Y, Murthy C, Raghu S, Kourkoutis L F and Hwang H Y 2023 Nature 619 7969
[20] Leonov I, Skornyakov S L and Savrasov S Y 2020 Phys. Rev. B 101 241108
[21] Liu Z, Xu C, Cao C, Zhu W, Wang Z F and Yang J 2021 Phys. Rev. B 103 045103
[22] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J and Cheng J G 2022 Nat. Commun. 13 4367
[23] Wang N N,Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L,Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y and Cheng J G 2024 Nature 634 579
[24] Wang G, Wang N N, Wang Y X, Shi L F, Shen X L, Hou J, Ma H M, Yang P T, Liu Z Y, Zhang H, Dong X L, Sun J P, Wang B S, Jiang K, Hu J P, Uwatoko Y and Cheng J G 2023 arXiv 2311 08212
[25] Geisler B, Hamlin J J, Stewart G R, Hennig R G and Hirschfeld P 2024 npj Quantum Materials 9 38
[26] Pan Z, Lu C, Yang F and Wu C 2024 Chin. Phys. Lett. 41 087401
[27] Zhang Y, Lin L F, Moreo A, Maier T A and Dagotto E 2023 Phys. Rev. B 108 165141
[28] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[29] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Löchl P E 1994 Phys. Rev. B 50 17953
[32] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[33] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[34] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001
[35] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Computer Physics Communications 185 2309
[36] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685
[37] XuMY, Huyan S,Wang H Z, Bud’ko S L, Chen X L, Ke X L, Mitchell J F, Canfield P C, Li J and Xie W W 2024 Advanced Electronic Materials 10 2400078
[38] Luo Z H, Hu X W, Wang M, Wú W and Yao D X 2023 Phys. Rev. Lett. 131 126001
[39] Wú W, Luo Z H, Yao D X and Wang M 2024 Sci. China Phys., Mech. & Astron. 67 117402
[40] Liu Y B, Mei J W, Ye F, Chen W Q and Yang F 2023 Phys. Rev. Lett. 131 236002
[41] Zhang Y, Lin L F, Moreo A, Maier T A and Dagotto E 2024 Nat. Commun. 15 2470
[42] Tian Y H, Chen Y, Wang J M, He R Q and Lu Z Y 2024 Phys. Rev. B 109 165154
[1] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
[2] Enhanced thermoelectric properties of the topological phase of monolayer HfC
Wenlai Mu(母文来), Nisar Muhammad(穆罕默德·尼萨), Baojuan Dong(董宝娟), Nguyen Tuan Hung(阮俊兴), Huaihong Guo(郭怀红), Riichiro Saito(斋藤理一郎), Weijiang Gong(公卫江), Teng Yang(杨腾), and Zhidong Zhang(张志东). Chin. Phys. B, 2025, 34(5): 057301.
[3] Electron momentum spectroscopy study on trifluorobromomethane: Electronic structure and electron correlation
Guangqing Chen(陈广庆), Shanshan Niu(牛珊珊), Yaguo Tang(唐亚国), Yuting Zhang(张雨亭), Zhaohui Liu(刘朝辉), Chunkai Xu(徐春凯), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2025, 34(4): 043401.
[4] Electronic structure and disorder effect of La3Ni2O7 superconductor
Yuxin Wang(王郁欣), Yi Zhang(张燚), and Kun Jiang(蒋坤). Chin. Phys. B, 2025, 34(4): 047105.
[5] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[6] Electronic structure and coexisting topological states in ferromagnetic and antiferromagnetic phases of MnBi2Te4 quantum wires
Jian Li(李健), Zhu-Cai Yin(尹柱财), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(3): 037501.
[7] Electronic structure and carrier mobility of BSb nanotubes
Lantian Xue(薛岚天), Chennan Song(宋晨楠), Miaomiao Jian(见苗苗), Qiang Xu(许强), Yuhao Fu(付钰豪), Pengyue Gao(高朋越), and Yu Xie(谢禹). Chin. Phys. B, 2025, 34(3): 037304.
[8] Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor
Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077404.
[9] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[10] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[11] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[12] Disassembling one-dimensional chains in molybdenum oxides
Xian Du(杜宪), Yidian Li(李义典), Wenxuan Zhao(赵文轩), Runzhe Xu(许润哲), Kaiyi Zhai(翟恺熠), Yulin Chen(陈宇林), and Lexian Yang(杨乐仙). Chin. Phys. B, 2024, 33(12): 127102.
[13] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[14] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[15] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
No Suggested Reading articles found!