Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu1, Mangladeep Bhullar1, Timothy A. Strobel2,†, and Yansun Yao1,‡
1 Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada; 2 Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Northwest, Washington DC 20015, USA
Abstract The recent discovery of type-VII boron-carbon clathrates with calculated superconducting transition temperatures approaching K has sparked interest in exploring new conventional superconductors that may be stabilized at ambient pressure. The electronic structure of the clathrate is highly tunable based on the ability to substitute different metal atoms within the cages, which may also be large enough to host small molecules. Here we introduce molecular hydrogen (H) within the clathrate cages and investigate its impact on electron-phonon coupling interactions and the superconducting transition temperature (). Our approach involves combining molecular hydrogen with the new diamond-like covalent framework, resulting in a hydrogen-encapsulated clathrate, (H)BC. A notable characteristic of (H)BC is the dynamic behavior of the H molecules, which exhibit nearly free rotations within the B-C cages, resulting in a dynamic structure that remains cubic on average. The static structure of (H)BC (a snapshot in its dynamic trajectory) is calculated to be dynamically stable at ambient and low pressures. Topological analysis of the electron density reveals weak van der Waals interactions between molecular hydrogen and the B-C cages, marginally influencing the electronic structure of the material. The electron count and electronic structure calculations indicate that (H)BC is a hole conductor, in which H molecules donate a portion of their valence electron density to the metallic cage framework. Electron-phonon coupling calculation using the Migdal-Eliashberg theory predicts that (H)BC possesses a of 46 K under ambient pressure. These results indicate potential for additional light-element substitutions within the type-VII clathrate framework and suggest the possibility of molecular hydrogen as a new approach to optimizing the electronic structures of this new class of superconducting materials.
Fund: This work was supported by Carnegie Canada and Natural Sciences and Engineering Research Council of Canada (NSERC).
Corresponding Authors:
Timothy A. Strobel, Yansun Yao
E-mail: tstrobel@carnegiescience.edu;yansun.yao@usask.ca
Cite this article:
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen 2025 Chin. Phys. B 34 036103
[1] Schrieffer J R 1999 Theory of Superconductivity (Boca Raton: CRC Press) [2] Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden 12 120 [3] Sun G F, Wong K W, Xu B R, Xin Y and Lu D F 1994 Phys. Lett. A 192 122 [4] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968 [5] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73 [6] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835 [7] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 [8] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001 [9] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [10] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001 [11] Bardeen J, Cooper L N and Schrieffer J R 1958 Phys. Rev. B 108 1175 [12] Pickard C J, Errea I and Eremets M I 2020 Annu. Rev. Condens. Matter Phys. 11 57 [13] Bhattacharyya P, Chen W, Huang X, Chatterjee, Huang B, Kobrin B, Lyu Y, Smart T J, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe Z M, Zu C, Struzhkin V, Jeanloz R, Moore J E, Cui T, Galli G, Halperin B I, Laumann C R and Yao N Y 2024 Nature 627 73 [14] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001 [15] Zhang Z, Cui T, Hutcheon M J, Shipley A M, Song H, Du M, Kresin V Z, Duan D, Pickard C J and Yao Y 2022 Phys. Rev. Lett. 128 047001 [16] Dolui K, Conway L J, Heil C, Strobel T A, Prasankumar R P and Pickard C J 2024 Phys. Rev. Lett. 132 166001 [17] Lilia B, et al. 2022 J. Phys.: Condens. Matter 34 183002 [18] Eliashberg G 1960 Sov. Phys.-JETP 11 696 [19] Eliashberg G 1961 Sov. Phys.-JETP 12 1000 [20] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748 [21] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu 2001 Nature 410 63 [22] McMillan W L 1968 Phys. Rev. 167 331 [23] Zipoli F, Bernasconi M and Benedek G 2006 Phys. Rev. B 74 205408 [24] Spagnolatti I, Bernasconi M and Benedek G 2003 Euro. Phys. J. B 34 63 [25] Blasé X, Bustarret E, Chapelier C, Klein T and Marcenat C 2009 Nat. Mater. 8 375 [26] Lu S, Liu H, Naumov I I, Meng S, Li Y, Tse J S, Yang B and Hemley R J 2016 Phys. Rev. B 93 104509 [27] Jin S, Kuang S, Dou X, Hermann A and Lu C 2024 J. Mater. Chem. C 12 1516 [28] Zeng T, Hoffmann R, Nesper R, Ashcroft N W, Strobel T A and Proserpio D M 2015 J. Am. Chem. Soc. 137 12639 [29] Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V B, Chaloux B L, Epshteyn A, Cohen R E and Strobel T A 2020 Sci. Adv. 6 eaay8361 [30] Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney- Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E and Strobel T A 2023 Phys. Rev. Res. 5 013012 [31] Gai T T, Guo P J, Yang H C, Gao Y, Gao M and Lu Z Y 2023 Phys. Rev. B 105 224514 [32] Strobel T A, Zhu L, Guńka P A, Borstad G M and Guerette M 2020 Angew. Chem. Int. Ed. 60 2877 [33] Wang J N, Yan X W and Gao M 2021 Phys. Rev. B 103 144515 [34] Di Cataldo S, Qulaghasi S, Bachelet G B and Boeri L 2022 Phys. Rev. B 105 064516 [35] Zhang P, Li X, Yang X, Wang H, Yao Y and Liu H 2022 Phys. Rev. B 105 094503 [36] Duan Q, Zhan L, Shen J, Zhong X and Lu C 2024 Phys. Rev. B 109 054505 [37] Geng N, Hilleke K P, Zhu L, Wang X, Strobel T A and Zurek E 2023 J. Am. Chem. Soc. 145 1696 [38] Cui X, Hilleke K P, Wang X, Lu M, Zhang M, Zurek E, Li W, Zhang D, Yan Y and Bi T 2020 J. Phys. Chem. C 124 14826 [39] Li J, Yue J, Guo S, Zhang A, Zhu L, Song H, Liu L, Liu Y and Cui T 2024 Phys. Rev. B 109 144509 [40] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 [41] Sun Y and Zhu L 2024 Commun. Phys. 7 324 [42] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [43] Kohn W and Sham L J 1964 Phys. Rev. 140 A1133 [44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [45] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [46] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [47] Blöchl P E 1994 Phys. Rev. B 50 17953 [48] Car R and Parrinello M 1985 Phys. Rev. Lett 55 2471 [49] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [50] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [51] Nosé S 1984 Mol. Phys. 52 255 [52] Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: 725 Oxford University Press) [53] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [54] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [55] Dynes R C 1972 Solid State Commun. 10 615 [56] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [57] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272 [58] Mao H K and Hemley R J 1994 Rev. Mod. Phys. 66 671 [59] Yao Y and Klug D D 2012 J. Phys.: Condens. Matter 24 265401 [60] Dopilka A, Childs A, Ovchinnikov A, Zhao R, Bobev S, Peng X and Chan C K 2021 ACS Appl. Mater. Interfaces 13 42564 [61] Zurek E, Hoffmann R, Ashcroft N W, Oganov A R and Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640 [62] Becke A D and Edgecombe K E 1990 J. Chem Phys. 92 5397 [63] Otero-de-la-Roza A, Blanco M A, Martín Pendás A and Luaña V 2009 Comput. Phys. Commun. 180 157 [64] Yao Y, Yong X, Tse J S and Greschner M J 2014 J. Phys. Chem. C 118 29591 [65] Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747 [66] Popelier P L A 1998 J. Phys. Chem. A 102 1873 [67] Yao Y and Klug D D 2010 Proc. Natl. Acad. Sci. USA 107 20893 [68] Simon A 1997 Angew. Chem. Int. Ed. 36 1788 [69] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463 [70] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G and Ma Y 2022 Phys. Rev. Lett. 128 167001 [71] Shi L T, Si J G, Turnbull R, Liang A, Liu P F andWang B T 2024 Phys. Rev. B 109 054512 [72] Souhassou M, Lecomte C, Ghermani N-E, Rohmer M M,Wiest R, Benard M and Blessing R H 1992 J. Am. Chem. Soc. 114 2371 [73] Espinosa E, Molins E and Lecomte C 1998 Chem. Phys. Lett. 285 170 [74] Abramov Y A 1997 Acta Crystallogr. A53 264
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.