Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 036103    DOI: 10.1088/1674-1056/ada757
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen

Akinwumi Akinpelu1, Mangladeep Bhullar1, Timothy A. Strobel2,†, and Yansun Yao1,‡
1 Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada;
2 Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, Northwest, Washington DC 20015, USA
Abstract  The recent discovery of type-VII boron-carbon clathrates with calculated superconducting transition temperatures approaching 100 K has sparked interest in exploring new conventional superconductors that may be stabilized at ambient pressure. The electronic structure of the clathrate is highly tunable based on the ability to substitute different metal atoms within the cages, which may also be large enough to host small molecules. Here we introduce molecular hydrogen (H2) within the clathrate cages and investigate its impact on electron-phonon coupling interactions and the superconducting transition temperature (Tc). Our approach involves combining molecular hydrogen with the new diamond-like covalent framework, resulting in a hydrogen-encapsulated clathrate, (H2)B3C3. A notable characteristic of (H2)B3C3 is the dynamic behavior of the H2 molecules, which exhibit nearly free rotations within the B-C cages, resulting in a dynamic structure that remains cubic on average. The static structure of (H2)B3C3 (a snapshot in its dynamic trajectory) is calculated to be dynamically stable at ambient and low pressures. Topological analysis of the electron density reveals weak van der Waals interactions between molecular hydrogen and the B-C cages, marginally influencing the electronic structure of the material. The electron count and electronic structure calculations indicate that (H2)B3C3 is a hole conductor, in which H2 molecules donate a portion of their valence electron density to the metallic cage framework. Electron-phonon coupling calculation using the Migdal-Eliashberg theory predicts that (H2)B3C3 possesses a Tc of 46 K under ambient pressure. These results indicate potential for additional light-element substitutions within the type-VII clathrate framework and suggest the possibility of molecular hydrogen as a new approach to optimizing the electronic structures of this new class of superconducting materials.
Keywords:  superconductivity      electronic structure      density functional theory      molecular dynamics  
Received:  28 November 2024      Revised:  05 January 2025      Accepted manuscript online:  08 January 2025
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  74.20.Pq (Electronic structure calculations)  
  74.25.-q (Properties of superconductors)  
Fund: This work was supported by Carnegie Canada and Natural Sciences and Engineering Research Council of Canada (NSERC).
Corresponding Authors:  Timothy A. Strobel, Yansun Yao     E-mail:  tstrobel@carnegiescience.edu;yansun.yao@usask.ca

Cite this article: 

Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen 2025 Chin. Phys. B 34 036103

[1] Schrieffer J R 1999 Theory of Superconductivity (Boca Raton: CRC Press)
[2] Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden 12 120
[3] Sun G F, Wong K W, Xu B R, Xin Y and Lu D F 1994 Phys. Lett. A 192 122
[4] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[5] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[6] Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets M I, Drozdov A P, Troyan I A, Hirao N and Ohishi Y 2016 Nat. Phys. 12 835
[7] Liu H, Naumov I I, Hoffmann R, Ashcroft N W and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[8] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[9] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528
[10] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[11] Bardeen J, Cooper L N and Schrieffer J R 1958 Phys. Rev. B 108 1175
[12] Pickard C J, Errea I and Eremets M I 2020 Annu. Rev. Condens. Matter Phys. 11 57
[13] Bhattacharyya P, Chen W, Huang X, Chatterjee, Huang B, Kobrin B, Lyu Y, Smart T J, Block M, Wang E, Wang Z, Wu W, Hsieh S, Ma H, Mandyam S, Chen B, Davis E, Geballe Z M, Zu C, Struzhkin V, Jeanloz R, Moore J E, Cui T, Galli G, Halperin B I, Laumann C R and Yao N Y 2024 Nature 627 73
[14] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[15] Zhang Z, Cui T, Hutcheon M J, Shipley A M, Song H, Du M, Kresin V Z, Duan D, Pickard C J and Yao Y 2022 Phys. Rev. Lett. 128 047001
[16] Dolui K, Conway L J, Heil C, Strobel T A, Prasankumar R P and Pickard C J 2024 Phys. Rev. Lett. 132 166001
[17] Lilia B, et al. 2022 J. Phys.: Condens. Matter 34 183002
[18] Eliashberg G 1960 Sov. Phys.-JETP 11 696
[19] Eliashberg G 1961 Sov. Phys.-JETP 12 1000
[20] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[21] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu 2001 Nature 410 63
[22] McMillan W L 1968 Phys. Rev. 167 331
[23] Zipoli F, Bernasconi M and Benedek G 2006 Phys. Rev. B 74 205408
[24] Spagnolatti I, Bernasconi M and Benedek G 2003 Euro. Phys. J. B 34 63
[25] Blasé X, Bustarret E, Chapelier C, Klein T and Marcenat C 2009 Nat. Mater. 8 375
[26] Lu S, Liu H, Naumov I I, Meng S, Li Y, Tse J S, Yang B and Hemley R J 2016 Phys. Rev. B 93 104509
[27] Jin S, Kuang S, Dou X, Hermann A and Lu C 2024 J. Mater. Chem. C 12 1516
[28] Zeng T, Hoffmann R, Nesper R, Ashcroft N W, Strobel T A and Proserpio D M 2015 J. Am. Chem. Soc. 137 12639
[29] Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V B, Chaloux B L, Epshteyn A, Cohen R E and Strobel T A 2020 Sci. Adv. 6 eaay8361
[30] Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney- Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E and Strobel T A 2023 Phys. Rev. Res. 5 013012
[31] Gai T T, Guo P J, Yang H C, Gao Y, Gao M and Lu Z Y 2023 Phys. Rev. B 105 224514
[32] Strobel T A, Zhu L, Guńka P A, Borstad G M and Guerette M 2020 Angew. Chem. Int. Ed. 60 2877
[33] Wang J N, Yan X W and Gao M 2021 Phys. Rev. B 103 144515
[34] Di Cataldo S, Qulaghasi S, Bachelet G B and Boeri L 2022 Phys. Rev. B 105 064516
[35] Zhang P, Li X, Yang X, Wang H, Yao Y and Liu H 2022 Phys. Rev. B 105 094503
[36] Duan Q, Zhan L, Shen J, Zhong X and Lu C 2024 Phys. Rev. B 109 054505
[37] Geng N, Hilleke K P, Zhu L, Wang X, Strobel T A and Zurek E 2023 J. Am. Chem. Soc. 145 1696
[38] Cui X, Hilleke K P, Wang X, Lu M, Zhang M, Zurek E, Li W, Zhang D, Yan Y and Bi T 2020 J. Phys. Chem. C 124 14826
[39] Li J, Yue J, Guo S, Zhang A, Zhu L, Song H, Liu L, Liu Y and Cui T 2024 Phys. Rev. B 109 144509
[40] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[41] Sun Y and Zhu L 2024 Commun. Phys. 7 324
[42] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[43] Kohn W and Sham L J 1964 Phys. Rev. 140 A1133
[44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[46] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[47] Blöchl P E 1994 Phys. Rev. B 50 17953
[48] Car R and Parrinello M 1985 Phys. Rev. Lett 55 2471
[49] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[50] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[51] Nosé S 1984 Mol. Phys. 52 255
[52] Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: 725 Oxford University Press)
[53] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[54] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[55] Dynes R C 1972 Solid State Commun. 10 615
[56] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[57] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[58] Mao H K and Hemley R J 1994 Rev. Mod. Phys. 66 671
[59] Yao Y and Klug D D 2012 J. Phys.: Condens. Matter 24 265401
[60] Dopilka A, Childs A, Ovchinnikov A, Zhao R, Bobev S, Peng X and Chan C K 2021 ACS Appl. Mater. Interfaces 13 42564
[61] Zurek E, Hoffmann R, Ashcroft N W, Oganov A R and Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640
[62] Becke A D and Edgecombe K E 1990 J. Chem Phys. 92 5397
[63] Otero-de-la-Roza A, Blanco M A, Martín Pendás A and Luaña V 2009 Comput. Phys. Commun. 180 157
[64] Yao Y, Yong X, Tse J S and Greschner M J 2014 J. Phys. Chem. C 118 29591
[65] Koch U and Popelier P L A 1995 J. Phys. Chem. 99 9747
[66] Popelier P L A 1998 J. Phys. Chem. A 102 1873
[67] Yao Y and Klug D D 2010 Proc. Natl. Acad. Sci. USA 107 20893
[68] Simon A 1997 Angew. Chem. Int. Ed. 36 1788
[69] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[70] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, Liu G and Ma Y 2022 Phys. Rev. Lett. 128 167001
[71] Shi L T, Si J G, Turnbull R, Liang A, Liu P F andWang B T 2024 Phys. Rev. B 109 054512
[72] Souhassou M, Lecomte C, Ghermani N-E, Rohmer M M,Wiest R, Benard M and Blessing R H 1992 J. Am. Chem. Soc. 114 2371
[73] Espinosa E, Molins E and Lecomte C 1998 Chem. Phys. Lett. 285 170
[74] Abramov Y A 1997 Acta Crystallogr. A53 264
[1] Electron momentum spectroscopy study on trifluorobromomethane: Electronic structure and electron correlation
Guangqing Chen(陈广庆), Shanshan Niu(牛珊珊), Yanguo Tang(唐亚国), Yuting Zhang(张雨亭), Zhaohui Liu(刘朝辉), Chunkai Xu(徐春凯), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2025, 34(4): 043401.
[2] Elastic–plastic behavior of nickel-based single crystal superalloys with γγ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[3] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
[4] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[5] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田) and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[6] Superconductivity in titanium probed by AC magnetic susceptibility to 120 Gpa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[7] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[8] Exploring Lifshitz transition and superconductivity in 3R-NbS2 under pressure
Kun Chen(陈坤), Xindeng Lv(吕心邓), Simin Li(李思敏), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037403.
[9] Electronic structure and coexisting topological states in ferromagnetic and antiferromagnetic phases of MnBi2Te4 quantum wires
Jian Li(李健), Zhu-Cai Yin(尹柱财), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(3): 037501.
[10] Atomic origin of minor alloying element effect on glass forming ability of metallic glass
Shan Zhang(张珊), Qingan Li(李庆安), Yong Yang(杨勇), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2025, 34(3): 036105.
[11] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[12] Electronic structure and carrier mobility of BSb nanotubes
Lantian Xue(薛岚天), Chennan Song(宋晨楠), Miaomiao Jian(见苗苗), Qiang Xu(许强), Yuhao Fu(付钰豪), Pengyue Gao(高朋越), and Yu Xie(谢禹). Chin. Phys. B, 2025, 34(3): 037304.
[13] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[14] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[15] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
No Suggested Reading articles found!