|
|
Disassembling one-dimensional chains in molybdenum oxides |
Xian Du(杜宪)1,†, Yidian Li(李义典)1, Wenxuan Zhao(赵文轩)1, Runzhe Xu(许润哲)1, Kaiyi Zhai(翟恺熠)1, Yulin Chen(陈宇林)2,3,4,‡, and Lexian Yang(杨乐仙)1,5,6,§ |
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK; 3 School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China; 4 ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China; 5 Frontier Science Center for Quantum Information, Beijing 100084, China; 6 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China |
|
|
Abstract The dimensionality of quantum materials strongly affects their physical properties. Although many emergent phenomena, such as charge-density wave and Luttinger liquid behavior, are well understood in one-dimensional (1D) systems, the generalization to explore them in higher dimensional systems is still a challenging task. In this study, we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds, where the contexture of 1D chains facilitates rich emergent properties. While the quasi-1D chains in these materials share general similarities, such as the motifs made up of MoO$_{{6}}$ octahedrons, they exhibit vast complexity and remarkable tunability. We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations. Furthermore, we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models. Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.
|
Received: 13 June 2024
Revised: 16 October 2024
Accepted manuscript online: 28 October 2024
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
Corresponding Authors:
Xian Du, Yulin Chen, Lexian Yang
E-mail: x-du19@mails.tsinghua.edu.cn;yulin.chen@physics.ox.ac.uk;lxyang@tsinghua.edu.cn
|
Cite this article:
Xian Du(杜宪), Yidian Li(李义典), Wenxuan Zhao(赵文轩), Runzhe Xu(许润哲), Kaiyi Zhai(翟恺熠), Yulin Chen(陈宇林), and Lexian Yang(杨乐仙) Disassembling one-dimensional chains in molybdenum oxides 2024 Chin. Phys. B 33 127102
|
[1] Grüner G 1988 Rev. Mod. Phys. 60 1129 [2] Grüner G 1994 Rev. Mod. Phys. 66 1 [3] Arutyunov K Y, Golubev D S and Zaikin A D 2008 Phys. Rep. 464 1 [4] Mikeska H J and Kolezhuk A K 2004 Quantum Magnetism (Heidelberg: Springer Berlin) pp. 1-83 [5] Voit J 1995 Rep. Prog. Phys. 58 977 [6] Arovas D P, Berg E, Kivelson S A and Raghu S 2022 Annu. Rev. Condens. Matter Phys. 13 239 [7] Deshpande V V, Bockrath M, Glazman L I and Yacoby A 2010 Nature 464 209 [8] Wang P, Yu G, Kwan Y H, Jia Y, Lei S, Klemenz S, Cevallos F A, Singha R, Devakul T, Watanabe K, Taniguchi T, Sondhi S L, Cava R J, Schoop L M, Parameswaran S A and Wu S 2022 Nature 605 57 [9] Du X, Kang L, Lv Y Y, Zhou J S, Gu X, Xu R Z, Zhang Q Q, Yin Z X, Zhao W X, Li Y D, He S M, Pei D, Chen Y B, Wang M X, Liu Z K, Chen Y L and Yang L X 2022 Nat. Phys. 19 40 [10] Greenblatt M 1988 Chem. Rev. 88 31 [11] Canadell E and Whangbo M H 1991 Chem. Rev. 91 965 [12] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [13] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter 29 465901 [14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [15] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [16] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902 [17] Mou D, Sapkota A, Kung H H, Krapivin V, Wu Y, Kreyssig A, Zhou X, Goldman A I, Blumberg G, Flint R and Kaminski A 2016 Phys. Rev. Lett. 116 196401 [18] Kang L, Du X, Zhou J S, et al. 2021 Nat. Commun. 12 6183 [19] Dudy L, Denlinger J D, Allen J W, Wang F, He J, Hitchcock D, Sekiyama A and Suga S 2013 J. Phys.: Condens. Matter 25 014007 [20] Vincent H, Ghedira M, Marcus J, Mercier J and Schlenker C 1983 J. Solid State Chem. 47 113 [21] Kihlborg L 1963 Arkiv for Kemi 21 365 [22] Portemer F, Sundberg M, Kihlborg L and Figlarz M 1993 J. Solid State Chem. 103 403 [23] da Luz M S, Neumeier J J, dos Santos C A M, White B D, Filho H J I, Leão J B and Huang Q 2011 Phys. Rev. B 84 014108 [24] Schutte W J and de Boer J L 1993 Acta Crystallogr., Sect. B: Struct. Sci. 49 579 [25] Perfetti L, Mitrovic S, Margaritondo G, Grioni M, Forró L, Degiorgi L and Höchst H 2002 Phys. Rev. B 66 075107 [26] Mou D, Konik R M, Tsvelik A M, Zaliznyak I and Zhou X 2014 Phys. Rev. B 89 201116 [27] Roussel P, Pérez O and Labbé P 2001 Acta Crystallogr. Sect. B: Struct. Sci. 57 603 [28] Quay C H L, Hughes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys. 6 336 [29] Inzani K, Nematollahi M, Vullum-Bruer F, Grande T, Reenaas T W and Selbach S M 2017 Phys. Chem. Chem. Phys. 19 9232 [30] Lee Y J, Lee T and Soon A 2019 Chem. Mater. 31 4282 [31] Chudzinski P, Berben M, Xu X, Wakeham N, Bernáth B, Duffy C, Hinlopen R D H, Hsu Y T, Wiedmann S, Tinnemans P, Jin R, Greenblatt M and Hussey N E 2023 Science 382 792 [32] Mercure J F, Bangura A F, Xu X, Wakeham N, Carrington A, Walmsley P, Greenblatt M and Hussey N E 2012 Phys. Rev. Lett. 108 187003 [33] McConnell A W, Clayman B P, Homes C C, Inoue M and Negishi H 1998 Phys. Rev. B 58 13565 [34] Chudzinski P, Jarlborg T and Giamarchi T 2012 Phys. Rev. B 86 075147 [35] Cho W, Platt C, McKenzie R H and Raghu S 2015 Phys. Rev. B 92 134514 [36] Giamarchi T 2004 Chem. Rev. 104 5037 [37] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|