Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127102    DOI: 10.1088/1674-1056/ad8bb2
RAPID COMMUNICATION Prev   Next  

Disassembling one-dimensional chains in molybdenum oxides

Xian Du(杜宪)1,†, Yidian Li(李义典)1, Wenxuan Zhao(赵文轩)1, Runzhe Xu(许润哲)1, Kaiyi Zhai(翟恺熠)1, Yulin Chen(陈宇林)2,3,4,‡, and Lexian Yang(杨乐仙)1,5,6,§
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK;
3 School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China;
4 ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China;
5 Frontier Science Center for Quantum Information, Beijing 100084, China;
6 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract  The dimensionality of quantum materials strongly affects their physical properties. Although many emergent phenomena, such as charge-density wave and Luttinger liquid behavior, are well understood in one-dimensional (1D) systems, the generalization to explore them in higher dimensional systems is still a challenging task. In this study, we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds, where the contexture of 1D chains facilitates rich emergent properties. While the quasi-1D chains in these materials share general similarities, such as the motifs made up of MoO$_{{6}}$ octahedrons, they exhibit vast complexity and remarkable tunability. We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations. Furthermore, we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models. Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.
Keywords:  electronic structure      molybdenum oxide      one-dimension      density-functional theory  
Received:  13 June 2024      Revised:  16 October 2024      Accepted manuscript online:  28 October 2024
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
Corresponding Authors:  Xian Du, Yulin Chen, Lexian Yang     E-mail:  x-du19@mails.tsinghua.edu.cn;yulin.chen@physics.ox.ac.uk;lxyang@tsinghua.edu.cn

Cite this article: 

Xian Du(杜宪), Yidian Li(李义典), Wenxuan Zhao(赵文轩), Runzhe Xu(许润哲), Kaiyi Zhai(翟恺熠), Yulin Chen(陈宇林), and Lexian Yang(杨乐仙) Disassembling one-dimensional chains in molybdenum oxides 2024 Chin. Phys. B 33 127102

[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Grüner G 1994 Rev. Mod. Phys. 66 1
[3] Arutyunov K Y, Golubev D S and Zaikin A D 2008 Phys. Rep. 464 1
[4] Mikeska H J and Kolezhuk A K 2004 Quantum Magnetism (Heidelberg: Springer Berlin) pp. 1-83
[5] Voit J 1995 Rep. Prog. Phys. 58 977
[6] Arovas D P, Berg E, Kivelson S A and Raghu S 2022 Annu. Rev. Condens. Matter Phys. 13 239
[7] Deshpande V V, Bockrath M, Glazman L I and Yacoby A 2010 Nature 464 209
[8] Wang P, Yu G, Kwan Y H, Jia Y, Lei S, Klemenz S, Cevallos F A, Singha R, Devakul T, Watanabe K, Taniguchi T, Sondhi S L, Cava R J, Schoop L M, Parameswaran S A and Wu S 2022 Nature 605 57
[9] Du X, Kang L, Lv Y Y, Zhou J S, Gu X, Xu R Z, Zhang Q Q, Yin Z X, Zhao W X, Li Y D, He S M, Pei D, Chen Y B, Wang M X, Liu Z K, Chen Y L and Yang L X 2022 Nat. Phys. 19 40
[10] Greenblatt M 1988 Chem. Rev. 88 31
[11] Canadell E and Whangbo M H 1991 Chem. Rev. 91 965
[12] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[13] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.: Condens. Matter 29 465901
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[16] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[17] Mou D, Sapkota A, Kung H H, Krapivin V, Wu Y, Kreyssig A, Zhou X, Goldman A I, Blumberg G, Flint R and Kaminski A 2016 Phys. Rev. Lett. 116 196401
[18] Kang L, Du X, Zhou J S, et al. 2021 Nat. Commun. 12 6183
[19] Dudy L, Denlinger J D, Allen J W, Wang F, He J, Hitchcock D, Sekiyama A and Suga S 2013 J. Phys.: Condens. Matter 25 014007
[20] Vincent H, Ghedira M, Marcus J, Mercier J and Schlenker C 1983 J. Solid State Chem. 47 113
[21] Kihlborg L 1963 Arkiv for Kemi 21 365
[22] Portemer F, Sundberg M, Kihlborg L and Figlarz M 1993 J. Solid State Chem. 103 403
[23] da Luz M S, Neumeier J J, dos Santos C A M, White B D, Filho H J I, Leão J B and Huang Q 2011 Phys. Rev. B 84 014108
[24] Schutte W J and de Boer J L 1993 Acta Crystallogr., Sect. B: Struct. Sci. 49 579
[25] Perfetti L, Mitrovic S, Margaritondo G, Grioni M, Forró L, Degiorgi L and Höchst H 2002 Phys. Rev. B 66 075107
[26] Mou D, Konik R M, Tsvelik A M, Zaliznyak I and Zhou X 2014 Phys. Rev. B 89 201116
[27] Roussel P, Pérez O and Labbé P 2001 Acta Crystallogr. Sect. B: Struct. Sci. 57 603
[28] Quay C H L, Hughes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys. 6 336
[29] Inzani K, Nematollahi M, Vullum-Bruer F, Grande T, Reenaas T W and Selbach S M 2017 Phys. Chem. Chem. Phys. 19 9232
[30] Lee Y J, Lee T and Soon A 2019 Chem. Mater. 31 4282
[31] Chudzinski P, Berben M, Xu X, Wakeham N, Bernáth B, Duffy C, Hinlopen R D H, Hsu Y T, Wiedmann S, Tinnemans P, Jin R, Greenblatt M and Hussey N E 2023 Science 382 792
[32] Mercure J F, Bangura A F, Xu X, Wakeham N, Carrington A, Walmsley P, Greenblatt M and Hussey N E 2012 Phys. Rev. Lett. 108 187003
[33] McConnell A W, Clayman B P, Homes C C, Inoue M and Negishi H 1998 Phys. Rev. B 58 13565
[34] Chudzinski P, Jarlborg T and Giamarchi T 2012 Phys. Rev. B 86 075147
[35] Cho W, Platt C, McKenzie R H and Raghu S 2015 Phys. Rev. B 92 134514
[36] Giamarchi T 2004 Chem. Rev. 104 5037
[37] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[1] Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model
Wen-Jie Zhou(周文杰), Xiao-Ju Liu(刘晓菊), Xiao-He Wu(邬潇河), Bang Li(李邦), Qi-Qi Shi(石奇奇), Hao-Chen Fan(樊皓尘), Yan-Jie Yang(杨艳杰), and Guo-Qiang Li(李国强). Chin. Phys. B, 2024, 33(8): 085205.
[2] Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor
Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077404.
[3] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[4] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[5] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[6] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[7] Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
[8] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[9] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[10] Electronic structure study of the charge-density-wave Kondo lattice CeTe3
Bo Wang(王博), Rui Zhou(周锐), Xuebing Luo(罗学兵), Yun Zhang(张云), and Qiuyun Chen(陈秋云). Chin. Phys. B, 2023, 32(9): 097103.
[11] F-μ bond length and μSR depolarization spectrum calculation for fluoride using two-component density functional theory
Zhikang Pan(潘智康), Li Deng(邓力), Ziwen Pan(潘子文), Yue Yuan(原钺), Hongjun Zhang(张宏俊), and Bangjiao Ye(叶邦角). Chin. Phys. B, 2023, 32(8): 087602.
[12] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[13] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[14] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[15] Two-dimensional CrP2 with high specific capacity and fast charge rate for lithium-ion battery
Xiaoyun Wang(王晓允), Tao Jing(荆涛), and Dongmei Liang(梁冬梅). Chin. Phys. B, 2023, 32(6): 067102.
No Suggested Reading articles found!