|
|
Electronic structure and effective mass of pristine and Cl-doped CsPbBr3 |
Zhiyuan Wei(魏志远)1,†, Yu-Hao Wei(魏愉昊)2,†, Shendong Xu(徐申东)3,†, Shuting Peng(彭舒婷)1, Makoto Hashimoto4, Donghui Lu(路东辉)4, Xu Pan(潘旭)3, Min-Quan Kuang(匡泯泉)2,‡, Zhengguo Xiao(肖正国)1,§, and Junfeng He(何俊峰)1,¶ |
1 Department of Physics and CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China; 2 Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, and School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 3 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 4 Stanford Synchrotron Radiation Lightsource and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA |
|
|
Abstract Organic-inorganic lead halide perovskites (LHPs) have attracted great interest owing to their outstanding optoelectronic properties. Typically, the underlying electronic structure would determinate the physical properties of materials. But as for now, limited studies have been done to reveal the underlying electronic structure of this material system, comparing to the huge amount of investigations on the material synthesis. The effective mass of the valance band is one of the most important physical parameters which plays a dominant role in charge transport and photovoltaic phenomena. In pristine CsPbBr$_{3}$, the Fröhlich polarons associated with the Pb-Br stretching modes are proposed to be responsible for the effective mass renormalization. In this regard, it would be very interesting to explore the electronic structure in doped LHPs. Here, we report high-resolution angle-resolved photoemission spectroscopy (ARPES) studies on both pristine and Cl-doped CsPbBr$_{3}$. The experimental band dispersions are extracted from ARPES spectra along both $\bar{\varGamma}$-$\bar{M}$-$\bar{\varGamma }$ and $\bar{X}$-$\bar{M}$-$\bar{X}$ high symmetry directions. DFT calculations are performed and directly compared with the ARPES data. Our results have revealed the band structure of Cl-doped CsPbBr$_{3}$ for the first time, which have also unveiled the effective mass renormalization in the Cl-doped CsPbBr$_{3}$ compound. Doping dependent measurements indicate that the chlorine doping could moderately tune the renormalization strength. These results will help understand the physical properties of LHPs as a function of doping.
|
Received: 11 January 2024
Revised: 07 March 2024
Accepted manuscript online: 10 April 2024
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
Fund: Project supported by the International Partnership Program of the Chinese Academy of Sciences (Grant No. 123GJHZ2022035MI) and the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000015 and WK3510000012). |
Corresponding Authors:
Min-Quan Kuang, Zhengguo Xiao, Junfeng He
E-mail: mqkuang@swu.edu.cn;zhengguo@ustc.edu.cn;jfhe@ustc.edu.cn
|
Cite this article:
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰) Electronic structure and effective mass of pristine and Cl-doped CsPbBr3 2024 Chin. Phys. B 33 057403
|
[1] Wells A F 1984 Structural Inorganic Chemistry 5th edn. (Oxford: Oxford University Press) [2] Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L and Yin L 2018 Nat. Commun. 9 1076 [3] Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764 [4] Tong G, Ono L K and Qi Y 2020 Energy Technol. 8 1900961 [5] Wang Z, Zeng L, Zhu T, Chen H, Chen B, Kubicki D J, Balvanz A, Li C, Maxwell A and Ugur E 2023 Nature 618 74 [6] Du X, Wu G, Cheng J, Dang H, Ma K, Zhang Y W, Tan P F and Chen S 2017 RSC Adv. 7 10391 [7] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D and Yan C 2018 Nature 562 245 [8] Zheng W, Wan Q, Liu M, Zhang Q, Zhang C, Yan R, Feng X, Kong L and Li L 2021 J. Phys. Chem. C 125 3110 [9] Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W and Kovalenko M V 2015 Nat. Commun. 6 8056 [10] Pan L, Pandey I R, Miceli A, Klepov V V, Chung D Y and Kanatzidis M G 2023 Adv. Opt. Mater. 11 2202946 [11] Dirin D N, Cherniukh I, Yakunin S, Shynkarenko Y and Kovalenko M V 2016 Chem. Mater. 28 8470 [12] Pan L, He Y, Klepov V V, Michael C and Kanatzidis M G 2022 IEEE Trans. Med. Imaging 41 3053 [13] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [14] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234 [15] Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B and Chowdhury A H 2020 Science 367 1135 [16] Köhnen E, Jǒst M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B and Schlatmann R 2019 Sustain. Energy Fuels 3 1995 [17] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L and Rech B 2016 Science 351 151 [18] Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet- Salomon B, Barraud L, Ding L, Diaz Leon J J and Sacchetto D 2018 Nat. Mater. 17 820 [19] Jenny D, Loferski J and Rappaport P 1956 Phys. Rev. 101 1208 [20] Yablonovitch E, Miller O D and Kurtz S R 2012 38th IEEE Photovoltaic Specialists Conference pp. 001556-001559 [21] Brenner T M, Egger D A, Kronik L, Hodes G and Cahen D 2016 Nat. Rev. Mater. 1 15007 [22] Komesu T, Huang X, Paudel T R, Losovyj Y B, Zhang X, Schwier E F, Kojima Y, Zheng M, Iwasawa H and Shimada K 2016 J. Phys. Chem. C 120 21710 [23] Niesner D, Wilhelm M, Levchuk I, Osvet A, Shrestha S, Batentschuk M, Brabec C and Fauster T 2016 Phys. Rev. Lett. 117 126401 [24] Sajedi M, Krivenkov M, Marchenko D, Varykhalov A, Sánchez- Barriga J, Rienks E and Rader O 2020 Phys. Rev. B 102 081116 [25] Yang J P, Meissner M, Yamaguchi T, Zhang X Y, Ueba T, Cheng L W, Ideta S, Tanaka K, Zeng X H and Ueno N 2018 Sol. RRL 2 1800132 [26] Zu F, Amsalem P, Egger D A, Wang R, Wolff C M, Fang H, Loi M A, Neher D, Kronik L and Duhm S 2019 J. Phys. Chem. Lett. 10 601 [27] Puppin M, Polishchuk S, Colonna N, Crepaldi A, Dirin D N, Nazarenko O, De Gennaro R, Gatti G, Roth S, Barillot T, Poletto L, Xian R P, Rettig L, Wolf M, Ernstorfer R, Kovalenko M V, Marzari N, Grioni M and Chergui M 2020 Phys. Rev. Lett. 124 206402 [28] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys. 93 025006 [29] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473 [30] Fröhlich H, Pelzer H and Zienau S 1950 Lond. Edinb. Dublin Phil. Mag. J. Sci. 41 221 [31] Iaru C M, Brodu A, van Hoof N J, Ter Huurne S E, Buhot J, Montanarella F, Buhbut S, Christianen P C, Vanmaekelbergh D and de Mello Donega C 2021 Nat. Commun. 12 5844 [32] Niesner D 2020 APL Mater. 8 090704 [33] Yu J, Liu G, Chen C, Li Y, Xu M, Wang T, Zhao G and Zhang L 2020 J. Mater. Chem. C 8 6326 [34] Wang F, Zhang H, Sun Q, Hafsia A B, Chen Z, Zhang B, Xu Y and Jie W 2020 Cryst. Growth Des. 20 1638 [35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [36] Kresse G and Fürthmuller J 1996 Phys. Rev. B 54 11169 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891 [39] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029 [40] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877 [41] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [42] Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y and Freeman A J 2013 Cryst. Growth Design 13 2722 [43] Cottingham P and Brutchey R L 2016 Chem. Commun. 52 5246 [44] He Y, Matei L, Jung H J, McCall K M, Chen M, Stoumpos C C, Liu Z, Peters J A, Chung D Y and Wessels B W 2018 Nat. Commun. 9 1609 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|