Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074213    DOI: 10.1088/1674-1056/add4f5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All-chalcogenide glass based high fill-factor long-wave infrared micro-metalens array with superior optical flexibility

Zhaofeng Gu(谷招峰)1,2,†, Kongsi Zhou(周孔思)1,2,†, Tong Sun(孙童)3, Yixiao Gao(高一骁)1,2, Yimin Chen(陈益敏)1,2, Zijun Liu(刘自军)1,2, Chenjie Gu(顾辰杰)1,2,3,‡, Pengfei Lu(芦鹏飞)3, and Xiang Shen(沈祥)1,2,§
1 Laboratory of Infrared Materials and Devices, Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China;
2 Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo 315211, China;
3 Zhejiang Supermat Sen-Ray Optoelectronics Co., Ltd., Ningbo 315400, China
Abstract  Long-wave infrared (LWIR) micro-metalens arrays have emerged as highly flexible and multifunctional optical elements, significantly enhancing the performance of infrared imaging systems. In this work, two types of chalcogenide glass based LWIR micro-metalens arrays with $10 \times 10$ array-size and 100% fill factor were designed and investigated. Specifically, the first one possesses a uniform focal length of 110 μm, and it can efficiently focus the incident light (9.78 μm) into a spot with a full width at half maximum (FWHM) of approximately 11.5 μm ($\sim 1.18\lambda $). Additionally, the second one features flexible and configurable focal lengths of the respective micro-metalenses in the array, and focal lengths of 102 μm, 149 μm, and 182 μm can be achieved on one substrate, while it still retains the same optical performance as the micro-metalens array with a single focal length. Overall, these all-chalcogenide glass based LWIR micro-metasurface arrays possess significant potential for integrating within advanced infrared imaging systems in the future.
Keywords:  chalcogenide glass      multi-focal micro-metalens array      long-wave infrared      high fill factor  
Received:  07 February 2025      Revised:  10 April 2025      Accepted manuscript online:  07 May 2025
PACS:  42.70.-a (Optical materials)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  95.75.De (Photography and photometry (including microlensing techniques))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province (Grant Nos. LDT23F05015F05 and LDT23F05011F05) and the Joint Funds of the National Natural Science Foundation of China (Grant No. U24A20313).
Corresponding Authors:  Chenjie Gu, Xiang Shen     E-mail:  guchenjie@nbu.edu.cn;shenxiang@nbu.edu.cn

Cite this article: 

Zhaofeng Gu(谷招峰), Kongsi Zhou(周孔思), Tong Sun(孙童), Yixiao Gao(高一骁), Yimin Chen(陈益敏), Zijun Liu(刘自军), Chenjie Gu(顾辰杰), Pengfei Lu(芦鹏飞), and Xiang Shen(沈祥) All-chalcogenide glass based high fill-factor long-wave infrared micro-metalens array with superior optical flexibility 2025 Chin. Phys. B 34 074213

[1] Velghe S, Primot J, Guérineau N, Haïdar R, Demoustier S, Cohen M and Wattellier B 2006 Proc. SPIE 6292 62920
[2] Holmes A S, Bich A, Meunier M, Rieck J, Dumouchel C, Arnold C B, Niino H, Roth S, Weible K J, Geohegan D B, Träger F, Eisner M, Voelkel R, Dubowski J J, Zimmermann M, Rank M, Schmidt M, Bitterli R, Ramanan N, Ruffieux P, Scharf T, Noell W, Herzig H P and De Rooij N 2008 Proc. SPIE 6879 68790Q
[3] Shankar M, Willett R, Pitsianis N, Schulz T, Gibbons R, Kolste T, Carriere J C, Chen D P and Brady D 2008 Appl. Optics 47 B1
[4] Xu H, Xu L, Zhu W and Zhang L 2024 Appl. Optics 63 5515
[5] Rogalski A 2003 Prog. Quant. Electron. 27 59
[6] Luo Z, Hou H, Meng T, Li Y, Wang T, Yi Y, Xu L, Chen Z, Zhong H, Feng Y, Zhang P and Zhao Y 2024 ACS Photonics 11 4597
[7] Shi J, Huang Y S, Peng L N, Ni Z J and Zhang D W 2020 Opt. Mater. 104 109733
[8] Zhou W, Li R, Li M, Tao P, Wang X, Dai S, Song B, Zhang W, Lin C, shen X, Xu T and Zhang P 2022 Ceram. Int. 48 18983
[9] Mukaida M and Yan J 2017 Int. J. Mach. Tool. Manu. 115 2
[10] Zhou T, Liu X, Liang Z, Liu Y, Xie J and Wang X 2017 Front. Mech. Eng-PRC. 12 46
[11] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Nat. Nanotechnol. 10 937
[12] Kamali S M, Arbabi E, Arbabi A and Faraon A 2018 Nanophotonics 7 1041
[13] Fan Q, Liu M, Yang C, Yu L, Yan F and Xu T 2018 Appl. Phys. Lett. 113 201104
[14] Luo X 2018 Adv. Opt. Mater. 6 1701201
[15] Tseng M L, Hsiao H H, Chu C H, Chen M K, Sun G, Liu A Q and Tsai D P 2018 Adv. Opt. Mater. 6 1800554
[16] Zhang N, Li Q, Chen J, Tang F, Wu J, Ye X and Yang L 2022 Chin. Phys. B 31 074212
[17] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T and Wang J H 2018 Nat. Nanotechnol. 13 227
[18] Paniagua-Dominguez R, Yu Y F, Khaidarov E, Choi S, Leong V, Bakker R M, Liang X, Fu Y H, Valuckas V and Krivitsky L A 2018 Nano Lett. 18 2124
[19] Fan Z B, Shao Z K, Xie M Y, Pang X N, Ruan W S, Zhao F L, Chen Y J, Yu S Y and Dong J W 2018 Phys. Rev. Appl. 10 014005
[20] Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H and Dong J W 2019 Light Sci. Appl. 8 67
[21] Fan Z B, Cheng Y F, Chen Z M, Liu X, Lu W L, Li S H, Jiang S J, Qin Z and Dong J W 2024 eLight 4 3
[22] Park J S, Lim S W D, Amirzhan A, Kang H, Karrfalt K, Kim D, Leger J, Urbas A, Ossiander M and Li Z 2024 ACS Nano 18 3187
[23] Lim S W D, Meretska M L and Capasso F 2021 Nano Lett. 21 8642
[24] Park J S, Zhang S, She A, Chen W T, Lin P, Yousef K M, Cheng J X and Capasso F 2019 Nano Lett. 19 8673
[25] Luan S, Cao H, Deng H, Zheng G, Song Y and Gui C 2022 ACS Appl. Mater. Interfaces 14 46112
[26] Phan H, Yi J, Bae J, Ko H, Lee S, Cho D, Seo J M and Koo K I 2021 Micromachines 12 847
[27] Bae S I, Kim K, Yang S, Jang K W and Jeong K H 2020 Opt. Express 28 9082
[28] Cao H, Deng H, Wan H, Luan S, Shen S and Gui C 2023 ACS Omega 8 48572
[29] Yan M, Li R, Li M, Liu S, Zhou G, Lin C, Dai S, Song B, Zhang W, Xu T and Zhang P 2024 Opt. Laser Technol. 174 110601
[30] Chen Z, Yuan H, Wu P, Zhang W, Juodkazis S, Huang H and Cao X 2021 Opt. Lett. 47 22
[31] Liu M, Fan Q, Yu L and Xu T 2019 Opt. Express 27 10738
[32] Soref R A, Emelett S J and Buchwald W R 2006 J. Opt. A-Pure. Appl. Op. 8 840
[33] Wang A, Chen Z and Dan Y 2019 AIP Adv. 9 085327
[34] Nalbant H C, Balli F, Yelboga T, Eren A and Sozak A 2022 Appl. Optics 61 9946
[35] Icenogle H W, Platt B C and Wolfe W L 1976 Appl. Optics 15 2348
[36] Han F, Gu J, Huang L, Wang H, Huang Y, Zhou X, Yu S, Luo Z, Dong Z and Du Q 2024 Chin. Phys. B 33 104207
[37] Gu Z, Gao Y, Zhou K, Ge J, Xu C, Xu L, Rahmani M, Jiang R, Chen Y and Liu Z 2024 Opto-Electron. Sci. 3 240017
[38] Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C and Capasso F 2016 Nano Lett. 16 7229
[39] Arbabi E, Arbabi A, Kamali S M, Horie Y and Faraon A 2017 Optica 4 625
[40] Wang S, Wu P C, Su V C, Lai Y C, Hung Chu C, Chen J W, Lu S H, Chen J, Xu B and Kuan C H 2017 Nat. Commun. 8 187
[41] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E and Capasso F 2018 Nat. Nanotechnol. 13 220
[42] Liu M, Zhao W, Wang Y, Huo P, Zhang H, Lu Y Q and Xu T 2024 Nano Lett. 24 7609
[1] Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics
Fengbo Han(韩锋博), Jiaxin Gu(顾佳新), Lu Huang(黄璐), Hang Wang(王航), Yali Huang(黄雅莉), Xuecheng Zhou(周学成), Shaoliang Yu(虞绍良), Zhengqian Luo(罗正钱), Zhipeng Dong(董志鹏), and Qingyang Du(杜清扬). Chin. Phys. B, 2024, 33(10): 104207.
[2] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[3] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[4] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
[5] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[6] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[7] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[8] Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared
Ning-Ning Wei(韦宁宁), Zhen Yang(杨振), Hong-Bo Pan(潘宏波), Fan Zhang(张凡), Yong-Xing Liu(刘永兴), Rong-Ping Wang(王荣平), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2018, 27(6): 067802.
[9] Hot-embossing fabrication of chalcogenide glasses rib waveguide for mid-infrared molecular sensing
Ting-Yang Yan(颜庭阳), Xiang Shen(沈祥), Rong-Ping Wang(王荣平), Guo-Xiang Wang(王国祥), Shi-Xun Dai(戴世勋), Tie-Feng Xu(徐铁峰), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2017, 26(2): 024213.
[10] Structural evolution study of additions of Sb2S3 and CdS into GeS2 chalcogenide glass by Raman spectroscopy
Hai-Tao Guo(郭海涛), Ming-Jie Zhang(张鸣杰), Yan-Tao Xu(许彦涛), Xu-Sheng Xiao(肖旭升), Zhi-Yong Yang(杨志勇). Chin. Phys. B, 2017, 26(10): 104208.
[11] Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber
He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆). Chin. Phys. B, 2016, 25(6): 064207.
[12] Homopolar bonds in Se-rich Ge—As—Se chalcogenide glasses
Si-Wei Xu(许思维), Rong-Ping Wang(王荣平), Zhi-Yong Yang(杨志勇), Li Wang(王丽), Luther-Davies Barry. Chin. Phys. B, 2016, 25(5): 057105.
[13] Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators
Yao Bao-Quan(姚宝权), Li Gang(李纲), Zhu Guo-Li(朱国利), Meng Pei-Bei(蒙裴贝), Ju You-Lun(鞠有伦), and Wang Yue-Zhu(王月珠) . Chin. Phys. B, 2012, 21(3): 034213.
[14] Structure dependence of ultrafast third-order optical nonlinearity for Ge—Ga—Cd sulfide glasses
Wang Zhen-Wei (王振伟), Wang Xue-Feng (王学锋), Liu Chun-Ling (刘春玲), Zhao Xiu-Jian (赵修建), Xiang Hong (向红), Yu Jia-Guo (余家国), Gong Qi-Huang (龚旗煌), Gu Shao-Xuan (顾少轩). Chin. Phys. B, 2005, 14(3): 551-555.
No Suggested Reading articles found!