| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
All-chalcogenide glass based high fill-factor long-wave infrared micro-metalens array with superior optical flexibility |
| Zhaofeng Gu(谷招峰)1,2,†, Kongsi Zhou(周孔思)1,2,†, Tong Sun(孙童)3, Yixiao Gao(高一骁)1,2, Yimin Chen(陈益敏)1,2, Zijun Liu(刘自军)1,2, Chenjie Gu(顾辰杰)1,2,3,‡, Pengfei Lu(芦鹏飞)3, and Xiang Shen(沈祥)1,2,§ |
1 Laboratory of Infrared Materials and Devices, Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China; 2 Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo 315211, China; 3 Zhejiang Supermat Sen-Ray Optoelectronics Co., Ltd., Ningbo 315400, China |
|
|
|
|
Abstract Long-wave infrared (LWIR) micro-metalens arrays have emerged as highly flexible and multifunctional optical elements, significantly enhancing the performance of infrared imaging systems. In this work, two types of chalcogenide glass based LWIR micro-metalens arrays with $10 \times 10$ array-size and 100% fill factor were designed and investigated. Specifically, the first one possesses a uniform focal length of 110 μm, and it can efficiently focus the incident light (9.78 μm) into a spot with a full width at half maximum (FWHM) of approximately 11.5 μm ($\sim 1.18\lambda $). Additionally, the second one features flexible and configurable focal lengths of the respective micro-metalenses in the array, and focal lengths of 102 μm, 149 μm, and 182 μm can be achieved on one substrate, while it still retains the same optical performance as the micro-metalens array with a single focal length. Overall, these all-chalcogenide glass based LWIR micro-metasurface arrays possess significant potential for integrating within advanced infrared imaging systems in the future.
|
Received: 07 February 2025
Revised: 10 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
42.70.-a
|
(Optical materials)
|
| |
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
| |
95.75.De
|
(Photography and photometry (including microlensing techniques))
|
| |
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
| Fund: Project supported by the Natural Science Foundation of Zhejiang Province (Grant Nos. LDT23F05015F05 and LDT23F05011F05) and the Joint Funds of the National Natural Science Foundation of China (Grant No. U24A20313). |
Corresponding Authors:
Chenjie Gu, Xiang Shen
E-mail: guchenjie@nbu.edu.cn;shenxiang@nbu.edu.cn
|
Cite this article:
Zhaofeng Gu(谷招峰), Kongsi Zhou(周孔思), Tong Sun(孙童), Yixiao Gao(高一骁), Yimin Chen(陈益敏), Zijun Liu(刘自军), Chenjie Gu(顾辰杰), Pengfei Lu(芦鹏飞), and Xiang Shen(沈祥) All-chalcogenide glass based high fill-factor long-wave infrared micro-metalens array with superior optical flexibility 2025 Chin. Phys. B 34 074213
|
[1] Velghe S, Primot J, Guérineau N, Haïdar R, Demoustier S, Cohen M and Wattellier B 2006 Proc. SPIE 6292 62920 [2] Holmes A S, Bich A, Meunier M, Rieck J, Dumouchel C, Arnold C B, Niino H, Roth S, Weible K J, Geohegan D B, Träger F, Eisner M, Voelkel R, Dubowski J J, Zimmermann M, Rank M, Schmidt M, Bitterli R, Ramanan N, Ruffieux P, Scharf T, Noell W, Herzig H P and De Rooij N 2008 Proc. SPIE 6879 68790Q [3] Shankar M, Willett R, Pitsianis N, Schulz T, Gibbons R, Kolste T, Carriere J C, Chen D P and Brady D 2008 Appl. Optics 47 B1 [4] Xu H, Xu L, Zhu W and Zhang L 2024 Appl. Optics 63 5515 [5] Rogalski A 2003 Prog. Quant. Electron. 27 59 [6] Luo Z, Hou H, Meng T, Li Y, Wang T, Yi Y, Xu L, Chen Z, Zhong H, Feng Y, Zhang P and Zhao Y 2024 ACS Photonics 11 4597 [7] Shi J, Huang Y S, Peng L N, Ni Z J and Zhang D W 2020 Opt. Mater. 104 109733 [8] Zhou W, Li R, Li M, Tao P, Wang X, Dai S, Song B, Zhang W, Lin C, shen X, Xu T and Zhang P 2022 Ceram. Int. 48 18983 [9] Mukaida M and Yan J 2017 Int. J. Mach. Tool. Manu. 115 2 [10] Zhou T, Liu X, Liang Z, Liu Y, Xie J and Wang X 2017 Front. Mech. Eng-PRC. 12 46 [11] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Nat. Nanotechnol. 10 937 [12] Kamali S M, Arbabi E, Arbabi A and Faraon A 2018 Nanophotonics 7 1041 [13] Fan Q, Liu M, Yang C, Yu L, Yan F and Xu T 2018 Appl. Phys. Lett. 113 201104 [14] Luo X 2018 Adv. Opt. Mater. 6 1701201 [15] Tseng M L, Hsiao H H, Chu C H, Chen M K, Sun G, Liu A Q and Tsai D P 2018 Adv. Opt. Mater. 6 1800554 [16] Zhang N, Li Q, Chen J, Tang F, Wu J, Ye X and Yang L 2022 Chin. Phys. B 31 074212 [17] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T and Wang J H 2018 Nat. Nanotechnol. 13 227 [18] Paniagua-Dominguez R, Yu Y F, Khaidarov E, Choi S, Leong V, Bakker R M, Liang X, Fu Y H, Valuckas V and Krivitsky L A 2018 Nano Lett. 18 2124 [19] Fan Z B, Shao Z K, Xie M Y, Pang X N, Ruan W S, Zhao F L, Chen Y J, Yu S Y and Dong J W 2018 Phys. Rev. Appl. 10 014005 [20] Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H and Dong J W 2019 Light Sci. Appl. 8 67 [21] Fan Z B, Cheng Y F, Chen Z M, Liu X, Lu W L, Li S H, Jiang S J, Qin Z and Dong J W 2024 eLight 4 3 [22] Park J S, Lim S W D, Amirzhan A, Kang H, Karrfalt K, Kim D, Leger J, Urbas A, Ossiander M and Li Z 2024 ACS Nano 18 3187 [23] Lim S W D, Meretska M L and Capasso F 2021 Nano Lett. 21 8642 [24] Park J S, Zhang S, She A, Chen W T, Lin P, Yousef K M, Cheng J X and Capasso F 2019 Nano Lett. 19 8673 [25] Luan S, Cao H, Deng H, Zheng G, Song Y and Gui C 2022 ACS Appl. Mater. Interfaces 14 46112 [26] Phan H, Yi J, Bae J, Ko H, Lee S, Cho D, Seo J M and Koo K I 2021 Micromachines 12 847 [27] Bae S I, Kim K, Yang S, Jang K W and Jeong K H 2020 Opt. Express 28 9082 [28] Cao H, Deng H, Wan H, Luan S, Shen S and Gui C 2023 ACS Omega 8 48572 [29] Yan M, Li R, Li M, Liu S, Zhou G, Lin C, Dai S, Song B, Zhang W, Xu T and Zhang P 2024 Opt. Laser Technol. 174 110601 [30] Chen Z, Yuan H, Wu P, Zhang W, Juodkazis S, Huang H and Cao X 2021 Opt. Lett. 47 22 [31] Liu M, Fan Q, Yu L and Xu T 2019 Opt. Express 27 10738 [32] Soref R A, Emelett S J and Buchwald W R 2006 J. Opt. A-Pure. Appl. Op. 8 840 [33] Wang A, Chen Z and Dan Y 2019 AIP Adv. 9 085327 [34] Nalbant H C, Balli F, Yelboga T, Eren A and Sozak A 2022 Appl. Optics 61 9946 [35] Icenogle H W, Platt B C and Wolfe W L 1976 Appl. Optics 15 2348 [36] Han F, Gu J, Huang L, Wang H, Huang Y, Zhou X, Yu S, Luo Z, Dong Z and Du Q 2024 Chin. Phys. B 33 104207 [37] Gu Z, Gao Y, Zhou K, Ge J, Xu C, Xu L, Rahmani M, Jiang R, Chen Y and Liu Z 2024 Opto-Electron. Sci. 3 240017 [38] Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C and Capasso F 2016 Nano Lett. 16 7229 [39] Arbabi E, Arbabi A, Kamali S M, Horie Y and Faraon A 2017 Optica 4 625 [40] Wang S, Wu P C, Su V C, Lai Y C, Hung Chu C, Chen J W, Lu S H, Chen J, Xu B and Kuan C H 2017 Nat. Commun. 8 187 [41] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E and Capasso F 2018 Nat. Nanotechnol. 13 220 [42] Liu M, Zhao W, Wang Y, Huo P, Zhang H, Lu Y Q and Xu T 2024 Nano Lett. 24 7609 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|