| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber |
| Shilong Liu(刘仕龙), Yang Li(李阳), Hongbin Hu(胡洪彬), Bing Sun(孙兵), and Zuxing Zhang(张祖兴)† |
| Advanced Photonic Technology Laboratory, the College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
|
|
Abstract A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering (FSBS) in highly nonlinear fiber (HNLF) with high sensitivity and high accuracy is proposed and demonstrated in this paper. High-order acoustic modes (HOAMs) are used to achieve individual or simultaneous measurement of the two parameters. Transverse acoustic waves (TAWs) involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding, which will be reflected in a linear shift of the acoustic resonance frequency. By analyzing the frequencies of specific scattering peaks, the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously. The highest measured temperature and acoustic impedance sensitivities are 184.93 kHz/$^\circ$C and 444.56 kHz/MRayl, and the measurement accuracies are 0.09 $^\circ$C and 0.009 MRayl, respectively, which are both at desirable levels. We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements.
|
Received: 24 February 2025
Revised: 28 March 2025
Accepted manuscript online: 08 April 2025
|
|
PACS:
|
42.81.Pa
|
(Sensors, gyros)
|
| |
42.81.-i
|
(Fiber optics)
|
| |
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
Corresponding Authors:
Zuxing Zhang
E-mail: zxzhang@njupt.edu.cn
|
Cite this article:
Shilong Liu(刘仕龙), Yang Li(李阳), Hongbin Hu(胡洪彬), Bing Sun(孙兵), and Zuxing Zhang(张祖兴) Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber 2025 Chin. Phys. B 34 074212
|
[1] Qiu L Q, Zhu Z D, Li T F, Zhou D W and Dong Y K 2021 IEEE Sens. J. 21 6209 [2] Catalano E, Vallifuoco R, Zeni L and Minardo A 2022 IEEE Sens. J. 22 6601 [3] Liang L L, Zhang Z L, Zhang W J, Peng J Q, Li X H and Lu Y G 2023 IEEE Photon. Technol. Lett. 35 1151 [4] Liu P K, Lu Y G, Zhang W J and Zhu M 2024 Opt. Commun. 563 130571 [5] Hoffman L, Müller M S, Krämer S, Giebel M, Schwotzer G and Wieduwilt T 2007 Estonian J. Eng 13 363 [6] Zorebski E, Zorebski M and Dzida M 2016 Arch. Acoust. Q 41 59 [7] Shelby R M, Levenson M D and Bayer PW1985 Phys. Rev. B 31 5244 [8] Li T F, Ba D X, Zhou D W, Ren Y L, Chen C, Zhang H Y and Dong Y K 2022 Opto-Electron. Eng. 49 220021 [9] Zhang L, Wang H, Li Y C, Gao S, Zhu M S, Wei H M, Pang F F and Wang T Y 2024 Opt. Express 32 586 [10] Yang G J, Zeng K Y, Wang L, Tang M and Liu D M 2023 Opt. Lett. 48 3611 [11] Zhang Z L, Lu Y G, Peng J Q and Ji Z Y 2021 Opt. Lett. 46 1776 [12] Zeng K Y, Yang G J, Xu Z Y, Song L, Wang L, Tang M and Liu D M 2023 Opt. Express 31 8595 [13] Fu Y X, Fan X Y, Wang B and He Z Y 2018 Asia Commun. Photon. Conf., 2018, Hangzhou, China, 2018, p. 1 [14] Zhang W J, Lu Y G and He C J 2023 IEEE Sens. J. 23 27361 [15] Hayashi N, Mizuno Y, Nakamura K, Set S Y and Yamashita S 2017 Opt. Express 25 2239 [16] Cao M, Huang L, Tang M, Mi Y A, Jian W, Ren W H and Ren G B 2020 J. Lightw. Technol. 38 6911 [17] Zheng Z, Li Z Y, Fu X L, Wang L X and Wang H H 2020 Opt. Lett. 45 4523 [18] Li X H, Lu Y G and Zhang Z L 2023 J. Lightw. Technol. 41 5130 [19] Shelby R M, Levenson M and Bayer P 1985 Phys. Rev. Lett. 54 939 [20] Puttmer A, Hauptmann P and Henning B 2000 IEEE Trans. Son. Ultrason. 47 85 [21] Zhang Z L, Lu Y G, Tanaka Y, Peng J Q and Zhuang Z K 2021 Appl. Phys. Exp. 14 042004 [22] Chow D M and Thévenaz L 2018 Opt. Lett. 43 5467 [23] Silva M E, Barros T and Alves H 2021 IEEE Sens. J. 21 1527 [24] Tommasi F D, D’Alvia L, Massaroni C, Presti D, CarassitiMand Prete Z D 2023 IEEE Trans. Instrum. Meas. 72 4007310 [25] Zhou D P, Li W H, Chen L and Bao X Y 2013 Sensors 13 1836 [26] Geng Y F, Li X J, Tan X L, Deng Y L and Yu Y Q 2011 IEEE Sens. J. 11 2891 [27] Zhou J T, Liao C R, Wang Y P, Yin G L, Zhong X Y, Yang K M, Sun B, Wang G J and Li Z Y 2014 Opt. Express 22 1680 [28] Bai Q, Xue B, Gu H, Wang D, Wang Y, Zhang M J, Jin B Q and Wang Y C 2019 IEEE Photon. Technol. Lett. 31 283 [29] Antman Y, London Y and Zadok A 2015 Proc. 24th Int. Conf. Opt. Fiber Sensors, 2015, Lausanne, Switzerland, p. 696 [30] Sánchez L A, Díez A, Cruz J L and Andrés M V 2022 Opt. Express 30 14384 [31] Bashan G, Diamandi H H, London Y, Preter E and Zadok A 2018 Nat. Commun. 9 2991 [32] Pang C, Hua Z J, Zhou D W, Zhang H Y, Chen L, Bao X Y and Dong Y K 2020 Optica 7 176 [33] Zhu M, Lu Y G, Zhang Z L, Liu P K and Zhang W J 2024 Opt. Fiber Technol. 84 103741 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|