Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074212    DOI: 10.1088/1674-1056/adca1b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber

Shilong Liu(刘仕龙), Yang Li(李阳), Hongbin Hu(胡洪彬), Bing Sun(孙兵), and Zuxing Zhang(张祖兴)†
Advanced Photonic Technology Laboratory, the College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering (FSBS) in highly nonlinear fiber (HNLF) with high sensitivity and high accuracy is proposed and demonstrated in this paper. High-order acoustic modes (HOAMs) are used to achieve individual or simultaneous measurement of the two parameters. Transverse acoustic waves (TAWs) involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding, which will be reflected in a linear shift of the acoustic resonance frequency. By analyzing the frequencies of specific scattering peaks, the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously. The highest measured temperature and acoustic impedance sensitivities are 184.93 kHz/$^\circ$C and 444.56 kHz/MRayl, and the measurement accuracies are 0.09 $^\circ$C and 0.009 MRayl, respectively, which are both at desirable levels. We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements.
Keywords:  forward stimulated Brillouin scattering (FSBS)      fiber optic sensor      temperature sensor      acoustic impedance sensor      simultaneous measurement  
Received:  24 February 2025      Revised:  28 March 2025      Accepted manuscript online:  08 April 2025
PACS:  42.81.Pa (Sensors, gyros)  
  42.81.-i (Fiber optics)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Corresponding Authors:  Zuxing Zhang     E-mail:  zxzhang@njupt.edu.cn

Cite this article: 

Shilong Liu(刘仕龙), Yang Li(李阳), Hongbin Hu(胡洪彬), Bing Sun(孙兵), and Zuxing Zhang(张祖兴) Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber 2025 Chin. Phys. B 34 074212

[1] Qiu L Q, Zhu Z D, Li T F, Zhou D W and Dong Y K 2021 IEEE Sens. J. 21 6209
[2] Catalano E, Vallifuoco R, Zeni L and Minardo A 2022 IEEE Sens. J. 22 6601
[3] Liang L L, Zhang Z L, Zhang W J, Peng J Q, Li X H and Lu Y G 2023 IEEE Photon. Technol. Lett. 35 1151
[4] Liu P K, Lu Y G, Zhang W J and Zhu M 2024 Opt. Commun. 563 130571
[5] Hoffman L, Müller M S, Krämer S, Giebel M, Schwotzer G and Wieduwilt T 2007 Estonian J. Eng 13 363
[6] Zorebski E, Zorebski M and Dzida M 2016 Arch. Acoust. Q 41 59
[7] Shelby R M, Levenson M D and Bayer PW1985 Phys. Rev. B 31 5244
[8] Li T F, Ba D X, Zhou D W, Ren Y L, Chen C, Zhang H Y and Dong Y K 2022 Opto-Electron. Eng. 49 220021
[9] Zhang L, Wang H, Li Y C, Gao S, Zhu M S, Wei H M, Pang F F and Wang T Y 2024 Opt. Express 32 586
[10] Yang G J, Zeng K Y, Wang L, Tang M and Liu D M 2023 Opt. Lett. 48 3611
[11] Zhang Z L, Lu Y G, Peng J Q and Ji Z Y 2021 Opt. Lett. 46 1776
[12] Zeng K Y, Yang G J, Xu Z Y, Song L, Wang L, Tang M and Liu D M 2023 Opt. Express 31 8595
[13] Fu Y X, Fan X Y, Wang B and He Z Y 2018 Asia Commun. Photon. Conf., 2018, Hangzhou, China, 2018, p. 1
[14] Zhang W J, Lu Y G and He C J 2023 IEEE Sens. J. 23 27361
[15] Hayashi N, Mizuno Y, Nakamura K, Set S Y and Yamashita S 2017 Opt. Express 25 2239
[16] Cao M, Huang L, Tang M, Mi Y A, Jian W, Ren W H and Ren G B 2020 J. Lightw. Technol. 38 6911
[17] Zheng Z, Li Z Y, Fu X L, Wang L X and Wang H H 2020 Opt. Lett. 45 4523
[18] Li X H, Lu Y G and Zhang Z L 2023 J. Lightw. Technol. 41 5130
[19] Shelby R M, Levenson M and Bayer P 1985 Phys. Rev. Lett. 54 939
[20] Puttmer A, Hauptmann P and Henning B 2000 IEEE Trans. Son. Ultrason. 47 85
[21] Zhang Z L, Lu Y G, Tanaka Y, Peng J Q and Zhuang Z K 2021 Appl. Phys. Exp. 14 042004
[22] Chow D M and Thévenaz L 2018 Opt. Lett. 43 5467
[23] Silva M E, Barros T and Alves H 2021 IEEE Sens. J. 21 1527
[24] Tommasi F D, D’Alvia L, Massaroni C, Presti D, CarassitiMand Prete Z D 2023 IEEE Trans. Instrum. Meas. 72 4007310
[25] Zhou D P, Li W H, Chen L and Bao X Y 2013 Sensors 13 1836
[26] Geng Y F, Li X J, Tan X L, Deng Y L and Yu Y Q 2011 IEEE Sens. J. 11 2891
[27] Zhou J T, Liao C R, Wang Y P, Yin G L, Zhong X Y, Yang K M, Sun B, Wang G J and Li Z Y 2014 Opt. Express 22 1680
[28] Bai Q, Xue B, Gu H, Wang D, Wang Y, Zhang M J, Jin B Q and Wang Y C 2019 IEEE Photon. Technol. Lett. 31 283
[29] Antman Y, London Y and Zadok A 2015 Proc. 24th Int. Conf. Opt. Fiber Sensors, 2015, Lausanne, Switzerland, p. 696
[30] Sánchez L A, Díez A, Cruz J L and Andrés M V 2022 Opt. Express 30 14384
[31] Bashan G, Diamandi H H, London Y, Preter E and Zadok A 2018 Nat. Commun. 9 2991
[32] Pang C, Hua Z J, Zhou D W, Zhang H Y, Chen L, Bao X Y and Dong Y K 2020 Optica 7 176
[33] Zhu M, Lu Y G, Zhang Z L, Liu P K and Zhang W J 2024 Opt. Fiber Technol. 84 103741
[1] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[2] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[3] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[4] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[5] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[6] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[7] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通). Chin. Phys. B, 2015, 24(10): 107801.
[8] Temperature dependence of the refractive index of optical fibers
Wang Zhi-Yong (王智勇), Qiu Qi (邱琪), Shi Shuang-Jin (史双瑾). Chin. Phys. B, 2014, 23(3): 034201.
[9] Simultaneous density and velocity measurements in a supersonic turbulent boundary layer
He Lin (何霖), Yi Shi-He (易仕和), Tian Li-Feng (田立丰), Chen Zhi (陈植), Zhu Yang-Zhu (朱杨柱). Chin. Phys. B, 2013, 22(2): 024704.
[10] Aluminium phthalocyanine chloride thin films for temperature sensing
Muhammad Tariq Saeed Chani, Abdullah M. Asiri, Kh. S. Karimov, Atif Khan Niaz, Sher Bhadar Khan, Khalid. A. Alamry. Chin. Phys. B, 2013, 22(11): 118101.
[11] Optical temperature sensor based on up-conversion fluorescence emission in Yb3+:Er3+ co-doped ceramics glass
Xu Wei(徐伟), Li Cheng-Ren(李成仁), Cao Bao-Sheng(曹保胜), and Dong Bin(董斌). Chin. Phys. B, 2010, 19(12): 127804.
No Suggested Reading articles found!