Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067802    DOI: 10.1088/1674-1056/27/6/067802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared

Ning-Ning Wei(韦宁宁)1,2, Zhen Yang(杨振)1,2, Hong-Bo Pan(潘宏波)1,2, Fan Zhang(张凡)1,2, Yong-Xing Liu(刘永兴)1,2, Rong-Ping Wang(王荣平)1,2, Xiang Shen(沈祥)1,2, Shi-Xun Dai(戴世勋)1,2, Qiu-Hua Nie(聂秋华)1,2
1 Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
Abstract  The principle of variable angle spectroscopic ellipsometry (VASE) and the data analysis models, as well as the applications of VASE in the characterization of chalcogenide bulk glasses and thin films are reviewed. By going through the literature and summarizing the application scopes of various analysis models, it is found that a combination of various models, rather than any single data analysis model, is ideal to characterize the optical constants of the chalcogenide bulk glasses and thin films over a wider wavelength range. While the reliable optical data in the mid-and far-infrared region are limited, the VASE is flexible and reliable to solve the issues, making it promising to characterize the optical properties of chalcogenide glasses.
Keywords:  chalcogenide glasses/thin films      VASE      optical constants      infrared  
Received:  22 December 2017      Revised:  07 March 2018      Accepted manuscript online: 
PACS:  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61775111 and 61775109),the International Cooperation Project of Ningbo City,China (Grant No.2017D10009),the Scientific Research Foundation of Graduate School of Ningbo University,China,and the K C Wong Magna Fund in Ningbo University,China.
Corresponding Authors:  Rong-Ping Wang, Xiang Shen     E-mail:  wangrongping@nbu.edu.cn;shenxiang@nbu.edu.cn

Cite this article: 

Ning-Ning Wei(韦宁宁), Zhen Yang(杨振), Hong-Bo Pan(潘宏波), Fan Zhang(张凡), Yong-Xing Liu(刘永兴), Rong-Ping Wang(王荣平), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), Qiu-Hua Nie(聂秋华) Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared 2018 Chin. Phys. B 27 067802

[1] Singh B and Synowicki R A 2000 Proceedings of SPIE-The International Society for Optical Engineering 3998 390
[2] Vedam K 1998 Thin Solid Films 313 1
[3] Collins R W, Koh J, Fujiwara H, Rovira P I, Ferlauto A S, Zapien J A, Wronski C R and Messier R 2000 Appl. Surf. Sci. 154 217
[4] Drude P 1902 Theory of Optics (Longmans, Green, and Co.)
[5] Budde W 1962 Appl. Opt. 1 201
[6] Cahan B D and Spanier R F 1969 Surf. Sci. 16 166
[7] Aspnes D E and Studna A A 1975 Appl. Opt. 14 220
[8] Azzam R M A, Bashara N M and Ballard S S 1977 Ellipsometry and Polarized Light, Vol. 31 (North-Holland Publishing Company) p. 72
[9] Muller R H and Farmer J C 1984 Rev. Sci. Instrum. 55 371
[10] Wang R P 2014 Amorphous Chalcogenides:Advances and Applications (Palo Alto:Pan Stanford Publishing Pte Ltd) p. 322
[11] Wei W H, Wang R P, Shen X, Fang L and Luther-Davies B 2013 J. Phys. Chem. C 117 16571
[12] Luther-Davies B, Wang R, Madden S, Wang T, Wei W, Shen X, Gai X and Yang Z 2014 Opt. Mater. Express 4 1011
[13] Sanghera J and Gibson D 2014 Chalcogenide Glasses 47 113
[14] Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K and Yang Z Y 2016 Acta Phys. Sin. 65 127801 (in Chinese)
[15] Gleason B, Richardson K, Sisken L and Smith C 2016 Int. J. Appl. Glass Sci. 7 374
[16] Orava J, Šik J, Wágner T and Frumar M 2008 J. Appl. Phys. 103 1
[17] Lee C C and Ku S L 2011 Thin Solid Films 519 1794
[18] Price J, Hung P Y, Rhoad T, Foran Band and Diebold A C 2004 Appl. Phys. Lett. 85 1701
[19] Němec Pand Přikryl J, Nazabal V and Frumar M 2011 J. Appl. Phys. 109 347
[20] Ferlauto A S, Ferreira G M, Pearce J M and Wronski C R 2002 J. Appl. Phys. 92 2424
[21] Seddon A B, Furniss D, Dantanarayana H G, Kubat I, Sojka L, Abdelmoneim N, Bang O, Sujecki S, Benson T and Mand Tang Z 2014 Opt. Mater. Express 4 1444
[22] Guo S, Xu L, Zhang J, Hu Z, Li T, Wu L, Song Z and Chu J 2016 Sci. Rep. 6
[23] Němec P, Olivier M, Baudet E, Kalendová A, Benda P and Nazabal V 2014 Mater. Res. Bull. 51 176
[24] Jellison G E and Modine F A 1996 Appl. Phys. Lett. 69 371
[25] Dantanarayana and Harshana G 2012 "Application of TLM for optical microresonators", Ph. D. Dissertation (Nottingham:University of Nottingham)
[26] Dantanarayana H G, Vukovic A, Sewell PLian Z G, et al. 2010 12th International Conference on Transparent Optical Networks, June 27-July 1, 2010, Munich, Germany, p. 1
[27] Wang Y, Qi S, Yang Z, Wang R, Yang A and Lucas P 2017 J. Non-Cryst. Solids 459 88
[28] Synowicki R A and Tiwald T E 2004 Thin Solid Films 455-456 248
[29] Hawlová P, Verger F, Nazabal V, Boidin R and Němec P 2015 J. Am. Ceram. Soc. 97 3044
[30] Orava J, Sik J, Wagner T and Frumar M 2008 J. Appl. Phys. 103 1
[31] Němec P and Frumar M 2008 Thin Solid Films 516 8377
[32] Park J W, Baek S H, Kang T D, Lee H, Kang Y S, Lee T Y, Suh D S, Kim K J, Kim C K and Khang Y H 2008 Appl. Phys. Lett. 93 2849
[33] Todorov R, Paneva A and Petkov K 2010 Thin Solid Films 518 3280
[34] Bahl S K and Chopra K L 1969 J. Appl. Phys. 40 4940
[35] Kotlikov E N, Ivanov V A, Pogareva V G and Khonineva E V 2000 Opt. Spectros. 88 718
[36] Kang T D, Sim K I, Kim J H, Wu Z, Cheong B K and Lee H 2012 Thin Solid Films 520 6221
[37] Yim C, O'Brien M, Mcevoy N, Winters S, Mirza I, Lunney J G and Duesberg G S 2014 Appl. Phys. Lett. 104 10451
[38] Amin G A M 2015 Mater. Sci.-Poland 33 501
[39] Shaaban E R, El-Hagary M, Emam-Ismail M, Elnaeim A M A, Moustafa S H and Adel A 2015 Mater. Sci. Semicond. Process. 39 735
[40] Guo S, Ding X J, Zhang J Z, Hu Z G, Ji X L, Wu L C, Song Z T and Chu J H 2015 Appl. Phys. Lett. 106 824
[41] Guo S, Huang T, Xu L P, Shi K, Zhang J Z, Ji X L, Hu Z G, Wu L C, Song Z T and Chu J H 2016 J. Phys. D:Appl. Phys. 49 265105
[42] Velea A, Socol G, Popescu M and Galca A C 2015 J. Appl. Phys. 118 600
[43] Abdelwahab F, Merazga A, Rasheedy M S and Montaser A A 2016 Optik-International Journal for Light and Electron Optics 127 3871
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[5] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[10] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[11] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[12] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[13] Near-infrared photocatalysis based on upconversion nanomaterials
Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平). Chin. Phys. B, 2022, 31(10): 108201.
[14] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[15] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
No Suggested Reading articles found!