CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared |
Ning-Ning Wei(韦宁宁)1,2, Zhen Yang(杨振)1,2, Hong-Bo Pan(潘宏波)1,2, Fan Zhang(张凡)1,2, Yong-Xing Liu(刘永兴)1,2, Rong-Ping Wang(王荣平)1,2, Xiang Shen(沈祥)1,2, Shi-Xun Dai(戴世勋)1,2, Qiu-Hua Nie(聂秋华)1,2 |
1 Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China; 2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China |
|
|
Abstract The principle of variable angle spectroscopic ellipsometry (VASE) and the data analysis models, as well as the applications of VASE in the characterization of chalcogenide bulk glasses and thin films are reviewed. By going through the literature and summarizing the application scopes of various analysis models, it is found that a combination of various models, rather than any single data analysis model, is ideal to characterize the optical constants of the chalcogenide bulk glasses and thin films over a wider wavelength range. While the reliable optical data in the mid-and far-infrared region are limited, the VASE is flexible and reliable to solve the issues, making it promising to characterize the optical properties of chalcogenide glasses.
|
Received: 22 December 2017
Revised: 07 March 2018
Accepted manuscript online:
|
PACS:
|
78.55.Qr
|
(Amorphous materials; glasses and other disordered solids)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61775111 and 61775109),the International Cooperation Project of Ningbo City,China (Grant No.2017D10009),the Scientific Research Foundation of Graduate School of Ningbo University,China,and the K C Wong Magna Fund in Ningbo University,China. |
Corresponding Authors:
Rong-Ping Wang, Xiang Shen
E-mail: wangrongping@nbu.edu.cn;shenxiang@nbu.edu.cn
|
Cite this article:
Ning-Ning Wei(韦宁宁), Zhen Yang(杨振), Hong-Bo Pan(潘宏波), Fan Zhang(张凡), Yong-Xing Liu(刘永兴), Rong-Ping Wang(王荣平), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), Qiu-Hua Nie(聂秋华) Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared 2018 Chin. Phys. B 27 067802
|
[1] |
Singh B and Synowicki R A 2000 Proceedings of SPIE-The International Society for Optical Engineering 3998 390
|
[2] |
Vedam K 1998 Thin Solid Films 313 1
|
[3] |
Collins R W, Koh J, Fujiwara H, Rovira P I, Ferlauto A S, Zapien J A, Wronski C R and Messier R 2000 Appl. Surf. Sci. 154 217
|
[4] |
Drude P 1902 Theory of Optics (Longmans, Green, and Co.)
|
[5] |
Budde W 1962 Appl. Opt. 1 201
|
[6] |
Cahan B D and Spanier R F 1969 Surf. Sci. 16 166
|
[7] |
Aspnes D E and Studna A A 1975 Appl. Opt. 14 220
|
[8] |
Azzam R M A, Bashara N M and Ballard S S 1977 Ellipsometry and Polarized Light, Vol. 31 (North-Holland Publishing Company) p. 72
|
[9] |
Muller R H and Farmer J C 1984 Rev. Sci. Instrum. 55 371
|
[10] |
Wang R P 2014 Amorphous Chalcogenides:Advances and Applications (Palo Alto:Pan Stanford Publishing Pte Ltd) p. 322
|
[11] |
Wei W H, Wang R P, Shen X, Fang L and Luther-Davies B 2013 J. Phys. Chem. C 117 16571
|
[12] |
Luther-Davies B, Wang R, Madden S, Wang T, Wei W, Shen X, Gai X and Yang Z 2014 Opt. Mater. Express 4 1011
|
[13] |
Sanghera J and Gibson D 2014 Chalcogenide Glasses 47 113
|
[14] |
Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K and Yang Z Y 2016 Acta Phys. Sin. 65 127801 (in Chinese)
|
[15] |
Gleason B, Richardson K, Sisken L and Smith C 2016 Int. J. Appl. Glass Sci. 7 374
|
[16] |
Orava J, Šik J, Wágner T and Frumar M 2008 J. Appl. Phys. 103 1
|
[17] |
Lee C C and Ku S L 2011 Thin Solid Films 519 1794
|
[18] |
Price J, Hung P Y, Rhoad T, Foran Band and Diebold A C 2004 Appl. Phys. Lett. 85 1701
|
[19] |
Němec Pand Přikryl J, Nazabal V and Frumar M 2011 J. Appl. Phys. 109 347
|
[20] |
Ferlauto A S, Ferreira G M, Pearce J M and Wronski C R 2002 J. Appl. Phys. 92 2424
|
[21] |
Seddon A B, Furniss D, Dantanarayana H G, Kubat I, Sojka L, Abdelmoneim N, Bang O, Sujecki S, Benson T and Mand Tang Z 2014 Opt. Mater. Express 4 1444
|
[22] |
Guo S, Xu L, Zhang J, Hu Z, Li T, Wu L, Song Z and Chu J 2016 Sci. Rep. 6
|
[23] |
Němec P, Olivier M, Baudet E, Kalendová A, Benda P and Nazabal V 2014 Mater. Res. Bull. 51 176
|
[24] |
Jellison G E and Modine F A 1996 Appl. Phys. Lett. 69 371
|
[25] |
Dantanarayana and Harshana G 2012 "Application of TLM for optical microresonators", Ph. D. Dissertation (Nottingham:University of Nottingham)
|
[26] |
Dantanarayana H G, Vukovic A, Sewell PLian Z G, et al. 2010 12th International Conference on Transparent Optical Networks, June 27-July 1, 2010, Munich, Germany, p. 1
|
[27] |
Wang Y, Qi S, Yang Z, Wang R, Yang A and Lucas P 2017 J. Non-Cryst. Solids 459 88
|
[28] |
Synowicki R A and Tiwald T E 2004 Thin Solid Films 455-456 248
|
[29] |
Hawlová P, Verger F, Nazabal V, Boidin R and Němec P 2015 J. Am. Ceram. Soc. 97 3044
|
[30] |
Orava J, Sik J, Wagner T and Frumar M 2008 J. Appl. Phys. 103 1
|
[31] |
Němec P and Frumar M 2008 Thin Solid Films 516 8377
|
[32] |
Park J W, Baek S H, Kang T D, Lee H, Kang Y S, Lee T Y, Suh D S, Kim K J, Kim C K and Khang Y H 2008 Appl. Phys. Lett. 93 2849
|
[33] |
Todorov R, Paneva A and Petkov K 2010 Thin Solid Films 518 3280
|
[34] |
Bahl S K and Chopra K L 1969 J. Appl. Phys. 40 4940
|
[35] |
Kotlikov E N, Ivanov V A, Pogareva V G and Khonineva E V 2000 Opt. Spectros. 88 718
|
[36] |
Kang T D, Sim K I, Kim J H, Wu Z, Cheong B K and Lee H 2012 Thin Solid Films 520 6221
|
[37] |
Yim C, O'Brien M, Mcevoy N, Winters S, Mirza I, Lunney J G and Duesberg G S 2014 Appl. Phys. Lett. 104 10451
|
[38] |
Amin G A M 2015 Mater. Sci.-Poland 33 501
|
[39] |
Shaaban E R, El-Hagary M, Emam-Ismail M, Elnaeim A M A, Moustafa S H and Adel A 2015 Mater. Sci. Semicond. Process. 39 735
|
[40] |
Guo S, Ding X J, Zhang J Z, Hu Z G, Ji X L, Wu L C, Song Z T and Chu J H 2015 Appl. Phys. Lett. 106 824
|
[41] |
Guo S, Huang T, Xu L P, Shi K, Zhang J Z, Ji X L, Hu Z G, Wu L C, Song Z T and Chu J H 2016 J. Phys. D:Appl. Phys. 49 265105
|
[42] |
Velea A, Socol G, Popescu M and Galca A C 2015 J. Appl. Phys. 118 600
|
[43] |
Abdelwahab F, Merazga A, Rasheedy M S and Montaser A A 2016 Optik-International Journal for Light and Electron Optics 127 3871
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|