Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074214    DOI: 10.1088/1674-1056/add904
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spectral photon-number distribution of parametric down-conversion and generation of heralded Fock states

Yan-Sheng Bao(包燕升)1,2, Bo-Chen Wang(王搏尘)1,2, Chang-Yong Tian(田昌勇)3,†, and Zheng-Yong Li(李政勇)1,2,‡
1 Department of Physics, Beijing Jiaotong University, Beijing 100044, China;
2 Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, Beijing Jiaotong University, Beijing 100044, China;
3 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Photon pairs with large nondegeneracy have recently attracted increasing interest, which gives rise to an urgent demand for revealing their complete and accurate spectral distribution. By thoroughly analyzing parametric down-conversion (PDC), we put forward a model to directly describe the spatial-spectral distribution of these photon pairs, which is experimentally demonstrated by a 532-nm pumped type-I PDC in a beta barium borate (BBO) crystal. The measured spectral curves show good agreement with the theoretical predictions over the entire spectral range. We further demonstrate that, as signal wavelength increases, the photon pairs are initially spectrally distinguishable, then partly indistinguishable, finally completely indistinguishable with a maximum bandwidth of approximately 500 nm. Utilizing photon-number-resolving single-photon detectors (SPD), we observe the average photon number decreases significantly more slowly than the spectral intensity as the wavelength deviates from the peak, and the photon numbers follow a quasi-Poisson distribution well for wavelengths around the peak, but a thermal distribution better describes the statistics near the spectral boundaries. Finally, we use the signal photons as the trigger to generate heralded Fock states up to 10 photons in near-infrared range, which are suitable for quantum simulation and quantum key distribution in optical fiber networks.
Keywords:  photon-number distribution      parametric down-conversion      Fock state  
Received:  03 March 2025      Revised:  04 May 2025      Accepted manuscript online:  15 May 2025
PACS:  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62075010).
Corresponding Authors:  Chang-Yong Tian, Zheng-Yong Li     E-mail:  tcy@mail.ipc.ac.cn;zhyli@bjtu.edu.cn

Cite this article: 

Yan-Sheng Bao(包燕升), Bo-Chen Wang(王搏尘), Chang-Yong Tian(田昌勇), and Zheng-Yong Li(李政勇) Spectral photon-number distribution of parametric down-conversion and generation of heralded Fock states 2025 Chin. Phys. B 34 074214

[1] Pan J, Chen Z, Lu C, Weinfurter H, Zeilinger A and Zukowski M 2012 Rev. Mod. Phys. 84 777
[2] Domeneguetti R, Stefszky M, Herrmann H and Silberhorn C 2023 Opt. Lett. 48 2999
[3] Dirmeier T, Tiedau J, Khan I, Ansari V andMüller C 2020 Opt. Express 28 30784
[4] Seifoory H, Vernon Z, Mahler D, Menotti M, Zhang Y and Sipe J 2022 Phys. Rev. A 105 033524
[5] Seifoory H, Doutre S, Dignam M and Sipe J 2017 J. Opt. Soc. Am. B 34 1587
[6] Perna A, Ortega E, Gräfe M and Steinlechner F 2022 Appl. Phys. Lett. 120 074001
[7] Li B, Xie Y, Li Z, Weng C, Li C, Yin H and Chen Z 2021 Opt. Lett. 46 5529
[8] Geng J, Fan-Yuan G, Wang S, Zhang Q, Chen W, Yin Z, He D, Guo G and Han Z 2021 Opt. Lett. 46 6099
[9] Zhang J N, Zhang T Y, Duan J C, Gong Y X and Zhu S N 2024 Chin. Phys. B 33 110301
[10] Chen Y H, Jiang Z and He G Q 2023 Chin. Phys. B 32 090306
[11] Morris P, Aspden R, Bell J, Boyd R and Padgett 2015 Nat. Commun. 6 5913
[12] Knill E, Laflamme R and Milburn G 2001 Nature 409 46
[13] Kalashnikov D, Paterova A, Kulik S and Krivitsky L 2016 Nat. Photonics 10 98
[14] Vallés A, Jiménez G, Salazar-Serrano L and Torres J 2018 Phys. Rev. A 97 023824
[15] Paterova A, Yang H, Toa Z and Krivitsky L 2020 Appl. Phys. Lett. 117 054004
[16] Pearce E, Phillips C, Oulton R and Clark A 2020 Appl. Phys. Lett. 117 054002
[17] Tian Y, Cai W H, Yang Z X, Chen F, Jin R B and Zhou Q 2022 Acta Phys. Sin. 71 054201 (in Chinese)
[18] Grice W, U’Ren A and Walmsley I 2001 Phys. Rev. A 64 063815
[19] Kim Y and Grice W 2005 Opt. Lett. 30 908
[20] Jin R B, Cai W H, Ding C, Mei F, Deng G W, Shimizu R and Zhou Q 2020 Quantum Engineering 2 e38
[21] Kuzucu O,Wong F, Kurimura S and Tovstonog S 2008 Phys. Rev. Lett. 101 153602
[22] Lemos G, Borish V, Cole G, Ramelow S, Lapkiewicz R and Zeilinger A 2014 Nature 512 409
[23] Scully M and Zubairy M 1997 Quantum Optics (Cambridge: Cambridge University Press)
[24] Boyd R 2008 Nonlinear Optics 3rd edn (San Diego: Academic Press)
[25] Liao T, Wang B C and Li Z Y 2020 Opt. Commun. 477 126352
[26] Brańczyk A M, Ralph T C, Helwig W and Silberhorn C 2010 New J. Phys. 12 063001
[1] Generation of broadband polarization-orthogonal photon pairs via the dispersion-engineered thin-film lithium niobate waveguide
Ji-Ning Zhang(张继宁), Tong-Yu Zhang(张同宇), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(11): 110301.
[2] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[3] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[4] Effect of thickness variations of lithium niobate on insulator waveguide on the frequency spectrum of spontaneous parametric down-conversion
Guang-Tai Xue(薛广太), Xiao-Hui Tian(田晓慧), Chi Zhang(张弛), Zhenda Xie(谢臻达), Ping Xu(徐平), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2021, 30(11): 110313.
[5] Simple and practical method of characterizing the parametric down-conversion source
Dong Wang(王东), Juan Wu(伍娟), Liang-Yuan Zhao(赵良圆), Xue-Bi An(安雪碧), Zhen-Qiang Yin(银振强), Wei Chen(陈巍), Zheng-Fu Han(韩正甫), Qin Wang(王琴). Chin. Phys. B, 2017, 26(11): 110302.
[6] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[7] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[8] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[9] Oscillation behaviour in the photon-number distribution of squeezed coherent states
Wang Shuai(王帅), Zhang Xiao-Yan(张晓燕), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2012, 21(5): 054206.
[10] A diagrammatic categorification of q-boson and q-fermion algebras
Cai Li-Qiang(蔡立强), Lin Bing-Sheng(林冰生), and Wu Ke(吴可) . Chin. Phys. B, 2012, 21(2): 020201.
[11] Phase-sensitive nonclassical properties of photon-added-then-subtracted coherent squeezed states
Liu Gang (刘刚), Wu Mu-Sheng (吴木生), Hu Li-Yun (胡利云 ). Chin. Phys. B, 2012, 21(11): 114205.
[12] Parametric down-conversion with local operation and two-way classical communication
Liu Qiang(刘强) and Tan Yong-Gang(谭勇刚) . Chin. Phys. B, 2011, 20(4): 040303.
[13] Adjusting the properties of the photon generated via an optical parametric oscillator by using a pulse pumped laser
Chen Song(陈嵩), Shi Bao-Sen(史保森), and Guo Guang-Can(郭光灿) . Chin. Phys. B, 2011, 20(11): 114206.
[14] Entanglement dynamics of two distant atoms in two detuning cavities
Ji Xin(计新), Lü Tian-Quan(吕天全), and Zhang Shou(张寿). Chin. Phys. B, 2010, 19(11): 110304.
[15] Generation of nonclassical states in a large detuning cavity
Zhang Ying-Jie(张英杰), Ren Ting-Qi(任廷琦), and Xia Yun-Jie(夏云杰). Chin. Phys. B, 2008, 17(3): 789-793.
No Suggested Reading articles found!