Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084208    DOI: 10.1088/1674-1056/27/8/084208
REVIEW Prev   Next  

Research progress of third-order optical nonlinearity of chalcogenide glasses

Xiao-Yu Zhang(张潇予)1,2,3, Fei-Fei Chen(陈飞飞)1,2, Xiang-Hua Zhang(章向华)4, Wei Ji(季伟)5
1 Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China;
3 Faculty of Science, Ningbo University, Ningbo 315211, China;
4 Laboratory of Glasses and Ceramics, UMR 6226 CNRS-University of Rennes 1, Rennes Cedex 135042, France;
5 Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
Abstract  Chalcogenide glasses (ChGs) are a promising candidate for applications in nonlinear photonic devices. In this paper, we review the research progress of the third-order optical nonlinearity (TONL) of ChGs from the following three aspects:chemical composition, excitation condition, and post processing. The deficiencies in previous studies and further research of the TONL property of ChGs are also discussed.
Keywords:  chalcogenide glasses      nonlinear optics      optical property  
Received:  12 January 2018      Revised:  09 March 2018      Accepted manuscript online: 
PACS:  42.65.An (Optical susceptibility, hyperpolarizability)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  78.55.Qr (Amorphous materials; glasses and other disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61675106), the National Key Research and Development Program of China (Grant No. 2016YFB0303803), and the K C Wong Magna Fund in Ningbo University.
Corresponding Authors:  Fei-Fei Chen     E-mail:

Cite this article: 

Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟) Research progress of third-order optical nonlinearity of chalcogenide glasses 2018 Chin. Phys. B 27 084208

[1] Jean-Luc A and Zhang X 2013 Chalcogenide Glasses: Preparation, Properties and Applications (Cambridge: Woodhead Publishing)
[2] Eggleton B J, Lutherdavies B and Richardson K 2011 Nat. Photon. 5 141
[3] Zakery A and Elliott S R 2007 Optical nonlinearities in chalcogenide glasses, their applications, Vol. 135 (Springer)
[4] Yang Z, Wu Y, Zhang X, Zhang W, Xu P and Dai S 2017 IEEE Photon. Technol. Lett. 29 66
[5] Théberge F, Mathieu P, Thiré N, Daigle J F, Schmidt B E, Fortin J, Vallée R, Messaddeq Y and Légaré F 2016 Opt. Express 24 24600
[6] Mizrahi V, Delong K W, Stegeman G I, Saifi M A and Andrejco M J 1989 Opt. Lett. 14 1140
[7] Petersen C R, Moller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdelmoneim N and Tang Z 2014 Nat. Photon. 8 830
[8] Bernier M, Fortin V, El-Amraoui M, Messaddeq Y and Vallée R 2014 Opt. Lett. 39 2052
[9] Shabahang S, Tao G, Marquez M P, Hu H, Ensley T R, Delfyett P J and Abouraddy A F 2014 J. Opt. Soc. Am. B 31 450
[10] Vogel E M 1989 J. Am. Ceram. Soc. 72 719
[11] Zakery A and Elliott S R 2003 J. Non-Cryst. Solids 330 1
[12] Agrawal Govind 2013 Nonlinear Fiber Optics, 5th edn. (Elsevier Inc.)
[13] Marchese D, Sario M D, Jha A, Kar A K and Smith E C 1998 J. Opt. Soc. Am. B 15 2361
[14] Sheik-Bahae M, Said A A, Wei T-H, Hagan D J and Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760
[15] Kanbara H, Fujiwara S, Tanaka K, Nasu H and Hirao K 1997 Appl. Phys. Lett. 70 925
[16] Kobayashi H, Kanbara H, Koga M and Kubodera K 1993 J. Appl. Phys. 74 3683
[17] Wang X F, Wang Z W, Yu J G, Liu C L, Zhao X J and Gong Q H 2004 Chem. Phys. Lett. 399 230
[18] Tao H, Dong G, Zhai Y, Guo H, Zhao X, Wang Z, Chu S, Wang S and Gong Q 2006 Solid State Commun. 138 485
[19] Dong G, Tao H, Xiao X, Lin C, Gong Y, Zhao X, Chu S, Wang S and Gong Q 2007 Opt. Express 15 2398
[20] Boudebs G, Sanchez F, Troles J and Smektala F 2001 Opt. Commun. 199 425
[21] Troles J, Smektala F, Boudebs G and Monteil A 2003 Opt. Mater. 22 335
[22] Fedus K, Boudebs G, Coulombier Q, Troles J and Zhang X H 2010 J. Appl. Phys. 107 023108
[23] Hajto E, Ewen P J S and Owen A E 1993 J. Non-Cryst. Solids 164 901
[24] Miller R C 1964 Appl. Phys. Lett. 5 17
[25] Nasu H, Matsuoka J and Kamiya K 1994 Jpn. J. Appl. Phys. 37 19
[26] Street R A and Mott N F 1975 Phys. Rev. Lett. 35 1293
[27] Tanaka K 2002 J. Optoelectron. Adv. Mater. 4 505
[28] Chu S, Li F, Tao H, Yang H, Wang S, Lin C, Zhao X and Gong Q 2008 Opt. Mater. 31 193
[29] Nasu H, Ibara Y and Kubodera K I 1989 J. Non-Cryst. Solids 110 229
[30] Zhou Z H, Hashimoto T, Nasu H and Kamiya K 1998 J. Appl. Phys. 84 2380
[31] Zhou Z H, Nasu H, Hashimoto T and Kamiya K 1997 J. Ceram. Soc. Jpn. 105 1079
[32] Zhou Z H, Nasu H, Hashimoto T and Kamiya K 1997 J. Non-Cryst. Solids 215 61
[33] Cardinal T, Richardson K A, Shim H, Schulte A, Beatty R, Foulgoc K L, Meneghini C, Viens J F and Villeneuve A 1999 J. Non-Cryst. Solids 256-257 353
[34] Lenz G, Zimmermann J, Katsufuji T, Lines M E, Hwang H Y, Spälter S, Slusher R E, Cheong S W, Sanghera J S and Aggarwal I D 2000 Opt. Lett. 25 254
[35] Cherukulappurath S, Guignard M, March, C, Smektala F and Boudebs G 2004 Opt. Commun. 242 313
[36] Gopinath J T, Soljačić M, Ippen E P, Fuflyigin V N, King W A and Shurgalin M 2004 J. Appl. Phys. 96 6931
[37] Dong G, Tao H, Chu S, Wang S, Zhao X, Gong Q, Xiao X and Lin C 2007 Opt. Commun. 270 373
[38] Guo H, Tao H, Gu S, Zheng X, Zhai Y, Chu S, Zhao X, Wang S and Gong Q 2007 J. Solid State Chem. 180 240
[39] Petit L, Carlie N, Richardson K, Humeau A, Cherukulappurath S and Boudebs G 2006 Opt. Lett. 31 1495
[40] Petit L, Carlie N, Humeau A, Boudebs G, Jain H, Miller A C and Richardson K 2007 Mater. Res. Bull. 42 2107
[41] Prasad A, Zha C J, Wang R P, Smith A, Madden S and Luther-Davies B 2008 Opt. Express 16 2804
[42] Barney E R, AbdelMoneim N S, Towey J J, Titman J, McCarthy J E, Bookey H T, Kar A, Furniss D and Seddon A B 2015 Phys. Chem. Chem. Phys. 17 6314
[43] Sheik-Bahae M, Hagan D J and Van Stryl E W 1990 Phys. Rev. Lett. 65 96
[44] Hall D W, Newhouse M A, Borrelli N F, Dumbaugh W H and Weidman D L 1989 Appl. Phys. Lett. 54 1293
[45] Quémard C, Smektala F, Couderc V, Barthélémy A and Lucas J 2001 J. Phys. & Chem. Solids 62 1435
[46] Harbold J M, Ilday F O, Wise F W and Aitken B G 2002 Opt. Lett. 27 119
[47] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S and Lutherdavies B 2014 Opt. Mater. Express 4 1011
[48] Sheikbahae M, Hagan D J and Van Stryl E W 1990 Phys. Rev. Lett. 65 96
[49] Dinu M 2003 IEEE J. Quantum Electron. 39 1498
[50] Bindra K S, Bookey H T, Kar A K, Wherrett B S, Liu X and Jha A 2001 Appl. Phys. Lett. 79 1939
[51] Dai S, Chen F, Xu Y, Xu Z, Shen X, Xu T, Wang R and Ji W 2015 Opt. Express 23 1300
[52] Qiao B, Chen F, Zhang P, Nie Q, Dai S, Xu T, Ji W, Shen X, Xu Y 2015 Opt. Mater. Express 5 2359
[53] Smektala F, Quemard C, Couderc V and Barthélémy A 2000 J. Non-Cryst. Solids 274 232
[54] Boudebs G, Cherukulappurath S, Leblond H, Troles J, Smektala F and Sanchez F 2003 Opt. Commun. 219 427
[55] Ogusu K, Yamasaki J, Maeda S, Kitao M and Minakata M 2004 Opt. Lett. 29 265
[56] Xiang H, Wang S, Wang Z, Li Z, Yang H, Gong Q, Wang X, Zhao X and Gu S 2006 Opt. Mater. 28 1020
[57] Zhang Q, Liu W, Liu L, Xu L, Xu Y and Chen G 2007 Appl. Phys. Lett. 91 181917
[58] Zhang X, Hongli M A and Lucas J 2004 J. Non-Cryst. Solids 337 130
[59] Lin C, Calvez L, Ying L, Chen F, Song B A, Shen X, Dai S and Zhang X 2011 Appl. Phys. A 104 615
[60] Shen X, Chen F, Lv X, Dai S, Wang X, Zhang W, Song B, Xu T, Nie Q and Liu C 2011 J. Non-Cryst. Solids 357 2316
[61] Chen F, Dai S, Lin C, Yu Q and Zhang Q 2013 Opt. Express 21 24847
[62] Huang Y, Chen F, Qiao B, Dai S, Nie Q and Zhang X 2016 Opt. Mater. Express 6 1644
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[4] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[5] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[6] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[7] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[11] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[12] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[13] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[14] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[15] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
No Suggested Reading articles found!