Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034213    DOI: 10.1088/1674-1056/21/3/034213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators

Yao Bao-Quan(姚宝权), Li Gang(李纲), Zhu Guo-Li(朱国利), Meng Pei-Bei(蒙裴贝), Ju You-Lun(鞠有伦), and Wang Yue-Zhu(王月珠)
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  Long-wave infrared (IR) generation based on type-II (o→e+o) phase matching ZnGeP2 (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 μm Tm,Ho:GdVO4 laser is reported. The comparisons of the birefringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 μm is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 μm. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 μm with a single crystal 28 mm in length.
Keywords:  long-wave infrared generation      ZGP/CdSe optical parametric oscillator      birefringent walk-off effect      oscillation threshold  
Received:  17 October 2010      Revised:  10 September 2011      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008) and the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0067).
Corresponding Authors:  Yao Bao-Quan,yaobq08@hit.edu.cn     E-mail:  yaobq08@hit.edu.cn

Cite this article: 

Yao Bao-Quan(姚宝权), Li Gang(李纲), Zhu Guo-Li(朱国利), Meng Pei-Bei(蒙裴贝), Ju You-Lun(鞠有伦), and Wang Yue-Zhu(王月珠) Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators 2012 Chin. Phys. B 21 034213

[1] Bianchi A and Garbi M 1979 Opt. Commun. 30 122
[2] Allik T H, Chandra S, Rines D M, Schunemann P G, Hutchinson J A and Utano R 1997 Opt. Lett. 22 597
[3] Vodopyanov K L 1998 Opt. Commun. 150 210
[4] Lippert E, Rustad G, Arisholm G and Stenersen K 2008 Opt. Express 16 13878
[5] Li G, Yao B Q, Duan X M, Zhu G L, Wang Y Z and Ju Y L 2010 Chin. Phys. Lett. 27 014207
[6] Budni P A, Pomeranz L A, Lemons M L, Schunemann P G, Pollak T M and Chicklis E P 1998 Advanced Solid-State Lasers (Washington D.C.: Optical Society of America) p. 90
[7] Elder I 2009 Proc. SPIE 7325 73250I
[8] Haidar S, Miyamoto K and Ito H 2004 Opt. Commun. 241 173
[9] Liu J H, Liu Q and Gong M L 2011 Acta Phys. Sin. 60 024215 (in Chinese)
[10] Ma J, Liu Y and Zhang L J 2011 Acta Phys. Sin. 60 024211 (in Chinese)
[11] Ding X, Sheng Q, Chen N, Yu X, Wang R, Zhang H, Wen W, Wang P and Yao J 2009 Chin. Phys. B 18 4314
[12] Zakel A, Wagner G, Alford W and Carrig T 2005 Advanced Solid-State Photonics, Technical Digest (Washington D.C.: Optical Society of America)
[13] Brosnan S and Byer R 1979 IEEE J. Quantum Electron. 15 415
[14] Brehat F 1989 J. Phys. B: At. Mol. Opt. Phys. 22 1891
[15] Zelmon D E and Hanning E A 2001 J. Opt. Soc. Am. B 18 1307
[16] Bhar G C 1976 Appl. Opt. 15 305
[17] Zhu G L, Ju Y L, Wang T H and Wang Y Z 2009 Chin. Phys. Lett. 26 034208
[1] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[4] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[5] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[6] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[7] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[8] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[9] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[10] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[11] The influence of stimulated temperature-dependent emission cross section on intracavity optical parametric oscillator
S Samimi, A Keshavarz. Chin. Phys. B, 2017, 26(2): 024207.
[12] A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武). Chin. Phys. B, 2016, 25(11): 114214.
[13] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[14] Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave
Xiong-Hua Zheng(郑雄桦), Bao-Fu Zhang(张宝夫), Zhong-Xing Jiao(焦中兴), Biao Wang(王彪). Chin. Phys. B, 2016, 25(1): 014208.
[15] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
No Suggested Reading articles found!