CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system |
Qilin Ye(叶旗林)1,2, Dan Chen(陈旦)1,2, and Changgui Lin(林常规)1,2,† |
1 Laboratory of IR Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China; 2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China |
|
|
Abstract Novel chalcogenide glasses of pseudo-binary (100-x)Sb2S3-xCuI systems were synthesized by traditional melt-quenching method. The glass-forming region of Sb2S3-CuI system was determined ranging from x=30 mol% to 40 mol%. CuI acts as a non-bridging modifier to form appropriate amount of [SbSI] structural units for improving the glass-forming ability of Sb2S3. Particularly, as-prepared glassy sample is able to transmit light beyond 14 μm, which is the wider transparency region than most sulfide glasses. Their physical properties, including Vickers hardness (H v), density (ρ ), and ionic conductivity (σ ) were characterized and analyzed with the compositional-dependent Raman spectra. These experimental results would provide useful knowledge for the development of novel multi-spectral optical materials and glassy electrolytes.
|
Received: 06 July 2020
Revised: 12 August 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
87.64.km
|
(Infrared)
|
|
87.64.kp
|
(Raman)
|
|
Fund: Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0303802 and 2016YFB0303803), the National Natural Science Foundation of China (Grant No. 61775110), and also sponsored by K C Wong Magna Fund in Ningbo University. |
Corresponding Authors:
†Corresponding author. E-mail: linchanggui@nbu.edu.cn
|
Cite this article:
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规) Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system 2021 Chin. Phys. B 30 016302
|
1 Richardson K, Krol D and Hirao K2010 Int. J. Appl. Glass Sci. 1 74 2 Lin C, Rüssel C and Dai S 2018 Prog. Mater. Sci. 93 1 3 Lin C G, Li Z B, Qian H J, Ni W H, Li Y Y and Dai S X 2012 Acta Phys. Sin. 61 154212 (in Chinese) 4 Huang X, Jiao Q, Lin C, Xu T, Ma H, Zhang X and Dai S 2018 J. Am. Ceram. Soc. 101 749 5 Li Z, Lin C, Qu G, Calvez L, Dai S, Zhang X, Xu T and Nie Q 2014 Mater. Lett. 132 203 6 Azhniuk Y M, Stoyka V, Petryshynets I, Rubish V M, Guranich O G, Gomonnai A V and Zahn D R T 2012 Mater. Res. Bull. 47 1520 7 Zhao X, Long N, Sun X, Yin G, Jiao Q, Liu X, Dai S and Lin C 2019 Infrared Phys. Technol. 102 102978 8 He Y, Wang X, Nie Q, Xu Y, Xu T and Dai S 2013 Infrared Phys. Technol. 60 129 9 Watanabe I, Noguchi S and Shimizu T 1983 J. Non-Cryst. Solids 58 35 10 Tang R, Zheng Z H, Su Z H, Li X J and Liang G X 2019 Nano Energy 64 103929 11 ervinka L and Hruby A 1982 J. Non-Cryst. Solids 48 231 12 Sun H W, Tanguy B, Reau J-M, Videau J J and Portiek J 1988 J. Non-Cryst. Solids 99 222 13 Raghni M E I, Lippens P, Olivier-Fourcade J and Jumas J C 1995 J. Non-Cryst. Solids 192 191 14 Zan L, Huang L and Zhang C 1995 J. Non-Cryst. Solids 184 1 15 Lin C, Li Z, Ying L, Xu Y, Zhang P, Dai S, Xu T and Nie Q 2012 J. Phys. Chem. C 116 5862 16 Ding L, Zhao D, Jain H, Xu Y, Wang S and Chen G 2010 J. Am. Ceram. Soc. 93 2932 17 Guo Q, Xu Y, Guo H, Xiao X, Lin C, Cui X, Wang P, Gao F, Lu M and Peng B 2017 J. Non-Cryst. Solids 464 81 18 Savytskii D, Sanders M, Golovchak R, Knorr B, Dierolf V and Jain H 2014 J. Am. Ceram. Soc. 97 198 19 Hafiz M M, Ibrahim M M, Dongol M and Hammad F H 1983 J. Appl. Phys. 54 1950 20 Zhai S, Li L, Chen F, Jiao Q, Rüssel C and Lin C 2015 J. Am. Ceram. Soc. 98 3770 21 Huang X, Jiao Q, Lin C, Ma H, Zhang X, Zhu E, Liu X, Dai S and Xu T 2018 Sci. Rep. 8 1699 22 Lin C, Zhu E, Wang J, Zhao X, Chen F and Dai S 2018 J. Phys. Chem. C 122 1486 23 Nagamedianova Z and Sànchez E 2002 J. Non-Cryst. Solids 311 1 24 Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M and Churbanov M F 2009 Inorganic Materials 45 1439 25 Ye Q, Weng K, Chen D and Lin C 2020 J. Am. Ceram. Soc. 103 4057 26 Wang J, Yu X, Long N, Sun X, Yin G, Jiao Q, Liu X, Dai S and Lin C 2019 J. Non-Cryst. Solids 521 119543 27 Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A and Tatsumisago M 2019 Nat. Commun. 10 1 28 Audzijonis A, Sereika R, ?igas L and ?altauskas R 2015 J. Phys. Chem. Solids 83 117 29 Xu Y, Fan B, Zhang X, Shen Q, Wang M and Ma H 2016 J. Non-Cryst. Solids 431 61 30 Xu Y, Jin H, Liu Y, Fan B, Ma H and Zhang X 2019 J. Mater. Sci.-Mater. Electron. 31 1654 31 Bolotov A, Bychkov E, Gavrilov Y, Grushko Y S, Pradel A, Ribes M, Tsegelnik V and Vlasov Y G 1998 Solid State Ion. 113 697 32 Lukic S R, Petrovic D M and Petrovic A F 1998 J. Non-Cryst. Solids 241 74 33 Baidakov D L, Shkol'Nikov E V and Ryseva V A 2010 Glass Physics & Chemistry 36 561 34 Stefan Jaschik M R G M, Michael Seifert, Claudia Rödl, Silvana Botti and Miguel A L Marques 2019 Chem. Mater. 31 7877 35 Perry C H and Agrawal D K 1970 Solid State Commun. 8 225 36 Guo H T, Zhang M J, Xu Y T, Xiao X S and Yang Z Y 2017 Chin. Phys. B 26 104208 37 Anderson A, Sharma S K, Wang S Y and Wang Z 1998 J. Raman Spectrosc. 29 251 38 Gomonnai A V, Voynarovych I M, Solomon A M, Azhniuk Y M, Kikineshi A A, Pinzenik V P, Kis-Varga M, Daroczy L and Lopushansky V V 2003 Mater. Res. Bull. 38 1767 39 Perales F, Lifante G, Agullò-Rueda F and De las Heras C 2007 J. Phys. D: Appl. Phys. 40 2440 40 Ma B, Jiao Q, Zhang Y, Sun X, Yin G, Zhang X, Ma H, Liu X and Dai S 2019 Ceram. Int. 45 22694 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|