Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024209    DOI: 10.1088/1674-1056/28/2/024209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber

Hua Chen(陈华)1,2, Ke-Lun Xia(夏克伦)1,2, Zi-Jun Liu(刘自军)1,2, Xun-Si Wang(王训四)1,2, Xiang-Hua Zhang(章向华)1,3, Yin-Sheng Xu(许银生)1,2, Shi-Xun Dai(戴世勋)1,2
1 Laboratory of Infrared Materials and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, China;
3 Laboratory of Glasses and Ceramics, UMR CNRS 6226, University of Rennes 1, Rennes Cedex 135042, France
Abstract  

We report on a chalcogenide glass fiber doped with Pr3+ that can be used for commercialized 1.5-μm and 2-μm laser excitations by emitting broadband 3 μm-5.5 μm fluorescence, which is extruded into a preform and then drawn into a step-index fiber. The spectroscopic properties of the fiber and glass are reported, and the mid-infrared fiber lasers are also numerically investigated. Cascade lasing is employed to increase the inversion population of the upper laser level. The particle swarm approach is applied to optimize the fiber laser parameters. The output power can reach 1.28 W at 4.89-μm wavelength, with a pump power of 5 W, excitation wavelength at 2.04 μm, Pr3+ ion concentration at 4.22×1025 ions/m3, fiber length at 0.94 m, and fiber background loss at 3 dB/m.

Keywords:  mid-infrared fiber laser      chalcogenide glass fiber      rare earth doped glass fiber      laser modelling  
Received:  26 September 2018      Revised:  15 November 2018      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.70.Hj (Laser materials)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: 

Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605095), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19F050004), the Natural Science Foundation of Ningbo City (Grant No. 2015A610038), the Open Fund of the Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices (South China University of Technology) (Grant No. 2016-4), and the K C Wong Magna Fund at Ningbo University.

Corresponding Authors:  Zi-Jun Liu     E-mail:  liuzijun@nbu.edu.cn

Cite this article: 

Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋) Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber 2019 Chin. Phys. B 28 024209

[1] Sujecki S, Oladeji A, Sojka L, Phillips A, Seddon A B, Benson T M, Sakr H, Tang Z, Furniss D and Scholle K 2014 International Conference on Numerical Simulation of Optoelectronic Devices, September 1-4, 2014, Palma de Mallorca, Spain, p. 111
[2] Sakr H, Tang Z, Furniss D, Sojka L, Sujecki S, Benson T M and Seddon A B 2001 IEEE J. Quantum Electron. 37 1127
[3] Shaw L B, Cole B, Thielen P A and Sanghera J S 2001 IEEE J. Quantum Electron. 37 1127
[4] Shaw L B, Cole B, Thielen P A, Sanghera J S and Aggarwal I D 2001 IEEE J. Quantum Electron. 37 1127
[5] Yang A P, Qiu J H, Zhang M J, Sun M Y and Yang Z Y 2018 Chin. Phys. B 27 77105
[6] Mescia L, Bia P, De S M, Di T A and Prudenzano F 2012 Opt. Express 20 7616
[7] Oladeji A, Sojka L, Tang Z, Furniss D, Phillips A, Seddon A, Benson T and Sujecki S 2014 Opt. Quantum Electron. 46 593
[8] Seddon A B, Tang Z, Furniss D, Sujecki S and Benson T M 2010 Opt. Express 18 26704
[9] Ren J, Yang G, Zeng H, Zhang X, Yang Y and Chen G 2006 J. Am. Ceram. Soc. 89 2486
[10] Reisfeld R 1982 Annales De Chimie Science Des Materiaux 7 147
[11] Mori A, Ohishi Y, Kanamori T and Sudo S 1997 Conference on Laers and Electron-Optics, July 14-18, 1997, Chiba, Japan, p. 51
[12] Samson B N, Schweizer T, Moore R C, Hewak D W and Payne D N 1997 Conference on Laers and Electron-Optics, July 14-18, 1997, Chiba, Japan, p. 51
[13] Sójka L, Tang Z, Furniss D, Sakr H, Oladeji A, Bereś-Pawlik E, Dantanarayana H, Faber E, Seddon A B and Benson T M T M 2014 Opt. Mater. 36 1076
[14] Sakr H, Furniss D, Tang Z, Sojka L, Moneim N A, Barney E, Sujecki S, Benson T M and Seddon A B 2014 Opt. Express 22 21236
[15] Judd B R 1962 Phys. Rev. 127 750
[16] Ofelt G S 1962 J. Chem. Phys. 37 511
[17] Mccumber D E 1964 Phys. Rev. 136 A954
[18] Sójka L, Tang Z, Furniss D, Sakr H, Bereś-Pawlik E, Seddon A B, Benson T M and Sujecki S 2017 Opt. Quantum Electron. 49 21
[19] Falconi M C, Palma G, Starecki F, Nazabal V, Troles J, Adam J L, Taccheo S, Ferrari M and Prudenzano F 2017 J. Lightwave Technol. 35 265
[20] Pal I, Agarwal A, Sanghi S and Aggarwal M P 2011 J. Alloys Compd. 509 7625
[21] Sójka Ł, Tang Z, Zhu H, Bereśpawlik E, Furniss D, Seddon A B, Benson T M and Sujecki S 2012 Opt. Mater. Express 2 1632
[22] Pollnau M, Ghisler C, Bunea G, Bunea M, Luthy W and Weber H P 1995 Appl. Phys. Lett. 66 3564
[23] Seddon A B, Furniss D, Sojka L, Churbanov M F, Sujecki S, Benson T M, Shiryaev V S and Tang Z 2015 Opt. Mater. Express 5 1722
[24] Sójka L, Tang Z, Furniss D, Sakr H, Berés-Pawlik E, Seddon A B, Benson T M and Sujecki S 2017 Opt. Quantum Electron. 49 21
[25] Eberhart and Shi Y 2001 Proceedings of the 2001 Congress on Evolutional Computation, May 27-30, 2001, Seoul, South Korea, p. 81
[26] Wei H L and Isa N A M 2014 Inf. Sci. 280 111
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[4] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[5] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[6] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[7] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[8] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[9] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[10] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[11] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[12] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[13] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[14] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!