Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077105    DOI: 10.1088/1674-1056/27/7/077105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses

Anping Yang(杨安平)1, Jiahua Qiu(邱嘉桦)1, Mingjie Zhang(张鸣杰)1,2, Mingyang Sun(孙明阳)1, Zhiyong Yang(杨志勇)1
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Abstract  The mid-infrared (MIR) luminescent properties of Dy3+ ions in a new chalcohalide glass host, Ga2S3-Sb2S3-CsI, are investigated; and the suitability of the doped glass for MIR fiber lasers is evaluated. The Dy3+-doped chalcohalide glasses exhibit good thermal stability and intense MIR emissions around 2.96 μ and 4.41 μm. These emissions show quantum efficiencies (η) as high as ~60%, and have relatively large stimulated emission cross sections (σem). The low phonon energy (~307 cm-1) of the host glass accounts for the intense MIR emissions, as well as the high η. These favorable thermal and emission properties make the Dy3+-doped Ga2S3-Sb2S3-CsI glasses promising materials for MIR fiber amplifiers or lasers.
Keywords:  chalcogenide glasses      rare earth      emission property      mid-infrared laser  
Received:  24 January 2018      Revised:  30 March 2018      Accepted manuscript online: 
PACS:  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
  76.30.Kg (Rare-earth ions and impurities)  
  78.45.+h (Stimulated emission)  
  95.85.Hp (Infrared (3-10 μm))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405080 and 61575086), Jiangsu Collaborative Innovation Centre of Advanced Laser Technology and Emerging Industry, China, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Zhiyong Yang     E-mail:  yangzhiyong@jsnu.edu.cn

Cite this article: 

Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇) Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses 2018 Chin. Phys. B 27 077105

[1] Jackson S D 2012 Nat. Photon. 6 423
[2] Kimber J A, Foreman L, Turner B, Rich P and Kazarian S 2016 Faraday Discuss. 187 69
[3] Lucas P, Coleman G, Cantoni C, Jiang S, Luo T, Bureau B, Boussard-Pledel C, Troles J and Yang Z Y 2017 Proc. SPIE 10058 100580Q
[4] Mirov S B, Fedorov V V, Moskalev I S and Martyshkin D V 2007 IEEE J. Sel. Top. Quant. 13 810
[5] Yan T Y, Shen X, Wang R P, Wang G X, Dai S X, Xu T F and Nie Q H 2017 Chin. Phys. B 26 024213
[6] Zhou P, Wang X, Ma Y, Lv H and Liu Z J 2012 Laser Phys. 22 1744
[7] Seddon A B, Tang Z Q, Furniss D, Sujecki S and Benson T M 2010 Opt. Express 18 26704
[8] Bowman S R, Shaw L B, Feldman B J and Ganem J 1996 IEEE J. Quant. Electron. 32 646
[9] Djeu N, Hartwell V E, Kaminskii A A and Butashin A V 1997 Opt. Lett. 13 997
[10] Zhao X Y, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Quan C, Li X L, Cheng M J, Zhang Q L and Yin S T 2017 Chin. Phys. B 26 074217
[11] Hu J, Menyuk C R, Wei C L, Shaw L B, Sanghera J S and Aggarwal I D 2015 Opt. Lett. 40 3687
[12] Charpentier F, Starecki F, Doualan J L, Jóvári P, Camy P, Troles J, Belin S, Bureau B and Nazabal V 2013 Mater. Lett. 101 21
[13] Zhang M J, Yang A P, Peng Y F, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y and Tang D Y 2015 Mater. Res. Bull. 70 55
[14] Liu Y Y, Liao M S, Wang X, Chen G R and Hu L L 2017 J. Lumin. 187 1
[15] Wang Z, Guo H, Xiao X, Xu Y, Cui X, Lu M, Peng B, Yang A, Yang Z and Gu S 2017 J. Alloys Compd. 692 1010
[16] Ren J, Chen D P, Yang G, Xu Y S, Zeng H D and Chen G R 2007 Chin. Phys. Lett. 24 1985
[17] Qi J N, Xu Y S, Huang F, Chen L Y, Han Y, Xue B, Zhang S Q, Xu T F and Dai S X 2014 J. Am. Ceram. Soc. 97 1471
[18] Xu Y S, Zhang Q, Shen C, Chen D P, Zeng H D and Chen G R 2009 J. Am. Ceram. Soc. 92 3088
[19] Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B and Chen G 2011 J. Appl. Phys. 109 033105
[20] Qiu J H, Yang A P, Zhang M J, Li L, Zhang B, Tang D Y and Yang Z Y 2017 J. Am. Ceram. Soc. 100 5107
[21] Woollam J A, Johs B, Herzinger C M, Hilfiker J, Synowicki R and Bungay C L 1999 Crit. Rev. Opt. Sci. Technol. 72 3
[22] Yang Y, Yang Z Y, Lucas P, Wang Y W, Yang Z J, Yang A P, Zhang B and Tao H Z 2016 J. Non-Cryst. Solids 440 38
[23] Yang Z Y, Li B T, He F, Luo L and Chen W 2008 J. Non-Cryst. Solids 354 1198
[24] Brooker M H, Nielsen O F and Praestgaard E 1988 J. Raman Spectrosc. 19 71
[25] Ichikawa M, Wakasugi T and Kadono K 2010 J. Non-Cryst. Solids 356 2235
[26] Tao H Z, Zhao X J, Jing C B, Yang H and Mao S 2005 Solid State Commun. 133 327
[27] Frumarová B, Němec P, Frumar M, Oswald J and Vlček M 1998 Semiconductor 32 812
[28] Guo H T, Zhang M J, Xu Y T, Xiao X S and Yang Z Y 2017 Chin. Phys. B 26 104208
[29] Heo J, Min Yoon J and Ryou S Y 1998 J. Non-Cryst. Solids 238 115
[30] Mao S, Tao H Z, Zhao X J, Dong G P and Guo H T 2007 Solid State Commun. 142 453
[31] Nakamoto K 2008 Infrared Raman Spectra Inorg. Coordination Compd. Part. A:Theory Appl. Inorg. Chem. (6th Edn.) (Hoboken:Wiley) pp. 129-196
[32] Musgraves J D, Wachtel P, Gleason B and Richardson K 2014 J. Non-Cryst. Solids 386 61
[33] Judd B R 1962 Phys. Rev. 127 750
[34] Ofelt G S 1962 J. Chem. Phys. 37 511
[35] Chen D Q, Wang Y S, Yu Y L, Ma E and Hu Z J 2005 J. Phys.:Condens. Matter 17 6545
[36] Yang Z Y, Chen W and Luo L 2005 J. Non-Cryst. Solids 351 2513
[37] Yang A, Zhang M, Li L, Wang Y, Zhang B, Yang Z and Tang D 2016 J. Am. Ceram. Soc. 99 12
[38] Wang X S, Song B A, Zhang W, Dai S X, Wang G X, Xu T F, Shen X, Zhang X H, Liu C, Xu K and Heo J 2011 J. Non-Cryst. Solids 357 2403
[39] Liu X B, Tikhomirov V and Jha A 2000 J. Mater. Res. 15 2864
[40] Lin H, Chen D Q, Yu Y L, Yang A P and Wang Y S 2011 Opt. Lett. 36 1815
[41] Schweizer T, Hewak D W, Samson B N and Payne D N 1996 Opt. Lett. 21 1594
[1] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[2] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[3] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[4] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[5] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[6] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[7] Research progress of third-order optical nonlinearity of chalcogenide glasses
Xiao-Yu Zhang(张潇予), Fei-Fei Chen(陈飞飞), Xiang-Hua Zhang(章向华), Wei Ji(季伟). Chin. Phys. B, 2018, 27(8): 084208.
[8] Transition intensity calculation of Yb: YAG
Hong-Bo Zhang(张洪波), Qing-Li Zhang(张庆礼), Xing Wang(王星), Gui-Hua Sun(孙贵花), Xiao-Fei Wang(王小飞), De-Ming Zhang(张德明), Dun-Lu Sun(孙敦陆). Chin. Phys. B, 2018, 27(6): 067801.
[9] Variable angle spectroscopic ellipsometry and its applications in determining optical constants of chalcogenide glasses in infrared
Ning-Ning Wei(韦宁宁), Zhen Yang(杨振), Hong-Bo Pan(潘宏波), Fan Zhang(张凡), Yong-Xing Liu(刘永兴), Rong-Ping Wang(王荣平), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2018, 27(6): 067802.
[10] Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
F X Li(李福祥), J B Kong(孔吉波), M Z Li(李茂枝). Chin. Phys. B, 2018, 27(5): 056102.
[11] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[12] Hot-embossing fabrication of chalcogenide glasses rib waveguide for mid-infrared molecular sensing
Ting-Yang Yan(颜庭阳), Xiang Shen(沈祥), Rong-Ping Wang(王荣平), Guo-Xiang Wang(王国祥), Shi-Xun Dai(戴世勋), Tie-Feng Xu(徐铁峰), Qiu-Hua Nie(聂秋华). Chin. Phys. B, 2017, 26(2): 024213.
[13] Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles
A Dahani, H Alamri, B Merabet, A Zaoui, S Kacimi, A Boukortt, M Bejar. Chin. Phys. B, 2017, 26(1): 017101.
[14] Rare earth Ce-modified (Ti,Ce)/a-C: H carbon-based filmon WC cemented carbide substrate
Shengguo Zhou(周升国), Zhengbing Liu(刘正兵), Shuncai Wang(王顺才). Chin. Phys. B, 2017, 26(1): 018101.
[15] Band-gap engineering of La1-xNdxAlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study
Sandeep, D P Rai, A Shankar, M P Ghimire, Anup Pradhan Sakhya, T P Sinha, R Khenata, S Bin Omran, R K Thapa. Chin. Phys. B, 2016, 25(6): 067101.
No Suggested Reading articles found!