CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses |
Anping Yang(杨安平)1, Jiahua Qiu(邱嘉桦)1, Mingjie Zhang(张鸣杰)1,2, Mingyang Sun(孙明阳)1, Zhiyong Yang(杨志勇)1 |
1 Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; 2 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract The mid-infrared (MIR) luminescent properties of Dy3+ ions in a new chalcohalide glass host, Ga2S3-Sb2S3-CsI, are investigated; and the suitability of the doped glass for MIR fiber lasers is evaluated. The Dy3+-doped chalcohalide glasses exhibit good thermal stability and intense MIR emissions around 2.96 μ and 4.41 μm. These emissions show quantum efficiencies (η) as high as ~60%, and have relatively large stimulated emission cross sections (σem). The low phonon energy (~307 cm-1) of the host glass accounts for the intense MIR emissions, as well as the high η. These favorable thermal and emission properties make the Dy3+-doped Ga2S3-Sb2S3-CsI glasses promising materials for MIR fiber amplifiers or lasers.
|
Received: 24 January 2018
Revised: 30 March 2018
Accepted manuscript online:
|
PACS:
|
71.23.Cq
|
(Amorphous semiconductors, metallic glasses, glasses)
|
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
78.45.+h
|
(Stimulated emission)
|
|
95.85.Hp
|
(Infrared (3-10 μm))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405080 and 61575086), Jiangsu Collaborative Innovation Centre of Advanced Laser Technology and Emerging Industry, China, and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China. |
Corresponding Authors:
Zhiyong Yang
E-mail: yangzhiyong@jsnu.edu.cn
|
Cite this article:
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇) Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses 2018 Chin. Phys. B 27 077105
|
[1] |
Jackson S D 2012 Nat. Photon. 6 423
|
[2] |
Kimber J A, Foreman L, Turner B, Rich P and Kazarian S 2016 Faraday Discuss. 187 69
|
[3] |
Lucas P, Coleman G, Cantoni C, Jiang S, Luo T, Bureau B, Boussard-Pledel C, Troles J and Yang Z Y 2017 Proc. SPIE 10058 100580Q
|
[4] |
Mirov S B, Fedorov V V, Moskalev I S and Martyshkin D V 2007 IEEE J. Sel. Top. Quant. 13 810
|
[5] |
Yan T Y, Shen X, Wang R P, Wang G X, Dai S X, Xu T F and Nie Q H 2017 Chin. Phys. B 26 024213
|
[6] |
Zhou P, Wang X, Ma Y, Lv H and Liu Z J 2012 Laser Phys. 22 1744
|
[7] |
Seddon A B, Tang Z Q, Furniss D, Sujecki S and Benson T M 2010 Opt. Express 18 26704
|
[8] |
Bowman S R, Shaw L B, Feldman B J and Ganem J 1996 IEEE J. Quant. Electron. 32 646
|
[9] |
Djeu N, Hartwell V E, Kaminskii A A and Butashin A V 1997 Opt. Lett. 13 997
|
[10] |
Zhao X Y, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Quan C, Li X L, Cheng M J, Zhang Q L and Yin S T 2017 Chin. Phys. B 26 074217
|
[11] |
Hu J, Menyuk C R, Wei C L, Shaw L B, Sanghera J S and Aggarwal I D 2015 Opt. Lett. 40 3687
|
[12] |
Charpentier F, Starecki F, Doualan J L, Jóvári P, Camy P, Troles J, Belin S, Bureau B and Nazabal V 2013 Mater. Lett. 101 21
|
[13] |
Zhang M J, Yang A P, Peng Y F, Zhang B, Ren H, Guo W, Yang Y, Zhai C C, Wang Y W, Yang Z Y and Tang D Y 2015 Mater. Res. Bull. 70 55
|
[14] |
Liu Y Y, Liao M S, Wang X, Chen G R and Hu L L 2017 J. Lumin. 187 1
|
[15] |
Wang Z, Guo H, Xiao X, Xu Y, Cui X, Lu M, Peng B, Yang A, Yang Z and Gu S 2017 J. Alloys Compd. 692 1010
|
[16] |
Ren J, Chen D P, Yang G, Xu Y S, Zeng H D and Chen G R 2007 Chin. Phys. Lett. 24 1985
|
[17] |
Qi J N, Xu Y S, Huang F, Chen L Y, Han Y, Xue B, Zhang S Q, Xu T F and Dai S X 2014 J. Am. Ceram. Soc. 97 1471
|
[18] |
Xu Y S, Zhang Q, Shen C, Chen D P, Zeng H D and Chen G R 2009 J. Am. Ceram. Soc. 92 3088
|
[19] |
Ren J, Wagner T, Bartos M, Frumar M, Oswald J, Kincl M, Frumarova B and Chen G 2011 J. Appl. Phys. 109 033105
|
[20] |
Qiu J H, Yang A P, Zhang M J, Li L, Zhang B, Tang D Y and Yang Z Y 2017 J. Am. Ceram. Soc. 100 5107
|
[21] |
Woollam J A, Johs B, Herzinger C M, Hilfiker J, Synowicki R and Bungay C L 1999 Crit. Rev. Opt. Sci. Technol. 72 3
|
[22] |
Yang Y, Yang Z Y, Lucas P, Wang Y W, Yang Z J, Yang A P, Zhang B and Tao H Z 2016 J. Non-Cryst. Solids 440 38
|
[23] |
Yang Z Y, Li B T, He F, Luo L and Chen W 2008 J. Non-Cryst. Solids 354 1198
|
[24] |
Brooker M H, Nielsen O F and Praestgaard E 1988 J. Raman Spectrosc. 19 71
|
[25] |
Ichikawa M, Wakasugi T and Kadono K 2010 J. Non-Cryst. Solids 356 2235
|
[26] |
Tao H Z, Zhao X J, Jing C B, Yang H and Mao S 2005 Solid State Commun. 133 327
|
[27] |
Frumarová B, Němec P, Frumar M, Oswald J and Vlček M 1998 Semiconductor 32 812
|
[28] |
Guo H T, Zhang M J, Xu Y T, Xiao X S and Yang Z Y 2017 Chin. Phys. B 26 104208
|
[29] |
Heo J, Min Yoon J and Ryou S Y 1998 J. Non-Cryst. Solids 238 115
|
[30] |
Mao S, Tao H Z, Zhao X J, Dong G P and Guo H T 2007 Solid State Commun. 142 453
|
[31] |
Nakamoto K 2008 Infrared Raman Spectra Inorg. Coordination Compd. Part. A:Theory Appl. Inorg. Chem. (6th Edn.) (Hoboken:Wiley) pp. 129-196
|
[32] |
Musgraves J D, Wachtel P, Gleason B and Richardson K 2014 J. Non-Cryst. Solids 386 61
|
[33] |
Judd B R 1962 Phys. Rev. 127 750
|
[34] |
Ofelt G S 1962 J. Chem. Phys. 37 511
|
[35] |
Chen D Q, Wang Y S, Yu Y L, Ma E and Hu Z J 2005 J. Phys.:Condens. Matter 17 6545
|
[36] |
Yang Z Y, Chen W and Luo L 2005 J. Non-Cryst. Solids 351 2513
|
[37] |
Yang A, Zhang M, Li L, Wang Y, Zhang B, Yang Z and Tang D 2016 J. Am. Ceram. Soc. 99 12
|
[38] |
Wang X S, Song B A, Zhang W, Dai S X, Wang G X, Xu T F, Shen X, Zhang X H, Liu C, Xu K and Heo J 2011 J. Non-Cryst. Solids 357 2403
|
[39] |
Liu X B, Tikhomirov V and Jha A 2000 J. Mater. Res. 15 2864
|
[40] |
Lin H, Chen D Q, Yu Y L, Yang A P and Wang Y S 2011 Opt. Lett. 36 1815
|
[41] |
Schweizer T, Hewak D W, Samson B N and Payne D N 1996 Opt. Lett. 21 1594
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|