ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Structural evolution study of additions of Sb2S3 and CdS into GeS2 chalcogenide glass by Raman spectroscopy |
Hai-Tao Guo(郭海涛)1,2, Ming-Jie Zhang(张鸣杰)1,3, Yan-Tao Xu(许彦涛)2, Xu-Sheng Xiao(肖旭升)2, Zhi-Yong Yang(杨志勇)1 |
1. Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China;
2. State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences(CAS), Xi'an 710119, China;
3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalcogenide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of[S3Ge-GeS3] structural units (SUs) and -S-S-/S8 groups exist simultaneously in GeS2 glass which has a three-dimensional continuous network backbone consisting of cross-linked corner-sharing and edge-sharing[GeS4] tetrahedra. When Sb2S3 is added into GeS2 glass, the network backbone becomes interconnected[GeS4] tetrahedra and[SbS3] pyramids. Moreover, Ge atoms in[S3Ge-GeS3] SUs tend to capture S atoms from Sb2S3, leading to the formation of[S2Sb-SbS2] SUs. When CdS is added into GeS2 glass,[Cd4GeS6] polyhedra are formed, resulting in a strong crystallization tendency. In addition, Ge atoms in[S3Ge-GeS3] SUs tend to capture S atoms from CdS, resulting in the dissolution of Ge-Ge bond. Co-melting of Sb2S3 or CdS with GeS2 reduces the viscosity of the melt and improves the homogeneity of the glass. The GeS2 glass can only dissolve up to 10-mol% CdS without crystallization. In comparison, GeS2-Sb2S3 glasses can dissolve up to 20-mol% CdS, implying that Sb2S3 could delay the construction of[Cd4GeS6] polyhedron and increase the dissolving amount of CdS in the glass.
|
Received: 29 April 2017
Revised: 01 June 2017
Accepted manuscript online:
|
PACS:
|
42.70.Ce
|
(Glasses, quartz)
|
|
42.70.Km
|
(Infrared transmitting materials)
|
|
36.20.Ng
|
(Vibrational and rotational structure, infrared and Raman spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475189, 61405240, and 61575086), the Natural Science Basic Research Project in Shaanxi Province, China (Grant No. 2015JQ5141), and the Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, China (Grant No. KLALMD-2015-08). |
Corresponding Authors:
Hai-Tao Guo, Zhi-Yong Yang
E-mail: guoht_001@opt.ac.cn;yangzhiyong@jsnu.edu.cn
|
Cite this article:
Hai-Tao Guo(郭海涛), Ming-Jie Zhang(张鸣杰), Yan-Tao Xu(许彦涛), Xu-Sheng Xiao(肖旭升), Zhi-Yong Yang(杨志勇) Structural evolution study of additions of Sb2S3 and CdS into GeS2 chalcogenide glass by Raman spectroscopy 2017 Chin. Phys. B 26 104208
|
[1] |
Zhang X H, Guimond Y and Bellec Y 2003 J. Non-Cryst. Solids 326-327 519
|
[2] |
Cha d H, Kim H J, Hwang Y, Jeong J C and Kim J H 2012 Appl. Opt. 51 5649
|
[3] |
Yang Z Y, Gulbiten O, Lucas P, Luo T and Jiang S B 2011 J. Am. Ceram. Soc. 94 1761
|
[4] |
Sanghera J and Gibson D 2014 Chalcogenide glasses:Preparation, properties and applications (Oxford:Woodhead Publishing), pp. 113-138
|
[5] |
Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
|
[6] |
Lucas P, Coleman G, Jiang S B, Luo T and Yang Z Y 2015 Opt. Mater. 47 530
|
[7] |
Ma P, Choi D Y, Yu Y, Yang Z Y, Vu K, Thach N, Mitchell A, Luther-Davies B and Madden S 2015 Opt. Express 23 19969
|
[8] |
Zhan H, Yan X T, Guo H T, Xu Y T, He J L, Li F, Yang J F, Si J H, Zhou Z G and Lin A X 2015 Opt. Mater. 42 491
|
[9] |
Zhang B, Zhai C C, Qi S S, Guo W, Yang Z Y, Yang A P, Gai X, Yu Y, Wang R P, Tang D Y, Tao G M and Luther-Davies B 2015 Opt. Lett. 40 4384
|
[10] |
Guo H T, Liu L, Wang Y Q, Hou C Q, Li W N, Lu M, Zou K S and Peng B 2009 Opt. Express 17 15350
|
[11] |
Seddon A B, Tang Z Q, Furniss D, Sujecki S and Benson T M 2010 Opt. Express 18 26704
|
[12] |
Yang A P, Qiu J H, Zhang M J, Ren H, Zhai C C, Qi S S, Zhang B, Tang D Y and Yang Z Y 2017 J. Alloys Compd. 695 1237
|
[13] |
Eggleton B J, Vo T D, Pant R, Schr J, Pelusi M D, Choi D Y, Madden S J, Luther-Davies B 2012 Laser Photon. Rev. 6 97
|
[14] |
Petersen C R, Müller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S, Abdel-Moneim N, Tang Z, Furniss D, Seddon A and Bang O 2014 Nat. Photon. 8 830
|
[15] |
Zhang B, Guo W, Yu Y, Zhai C C, Qi S S, Yang A P, Li L, Yang Z Y, Wang R P, Tang D Y, Tao G M and Luther-Davies B 2015 J. Am. Ceram. Soc. 98 1389
|
[16] |
Ou H Y, Dai S X, Zhang P Q, Liu Z J, Wang X S, Chen F F, Xu H, Luo B H, Huang Y C and Wang R P 2016 Opt. Lett. 41 3201
|
[17] |
Bernier M, El-Amraoui M, Couillard J F, Messaddeq Y and Vallée R 2012 Opt. Lett. 37 3900
|
[18] |
Guo H T, Tao H Z, Gong Y Q and Zhao X J 2008 J. Non-Cryst. Solids 354 1159
|
[19] |
Guo H T, Tao H Z, Gu S X, Zheng X L, Zhai Y B, Chu S S, Zhao X J, Wang S and Gong Q H 2007 J. Solid State Chem. 180 240
|
[20] |
Yang Z Y, Tang G, Luo L and Chen W 2007 J. Am. Ceram. Soc. 90 667
|
[21] |
Guo H T, Hou C Q, Gao F, Lin A X, Wang P F, Zhou Z G, Lu M, Wei W and Peng B 2010 Opt. Express 18 23275
|
[22] |
Guo H T, Zheng X L, Lu M, Zou K S, Peng B, Gu S X, Liu H and Zhao X J 2009 Opt. Mater. 31 865
|
[23] |
Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X and Nie Q H 2016 Acta Phys. Sin. 65 154207(in Chinese)
|
[24] |
Yang Y, Chen Y X, Liu Y H, Rui Y, Cao F Y, Yang A P, Zu C K and Yang Z Y 2016 Acta Phys. Sin. 65 127801(in Chinese)
|
[25] |
Brooker M H, Nielsen O F and Praestgaard E 1988 J, Raman Spectrosc. 19 71
|
[26] |
Andrikopoulos K S, Yannopoulos S N, Voyiatzis G A, Kolobov A V, Ribes M and Tominaga J 2006 J. Phys:Condens. Matter 18 965
|
[27] |
Musgraves J D, Wachtel P, Gleason B and Richardson K 2014 J. Non-Cryst. Solids 386 61
|
[28] |
Petit L, Carlie N, Adamietz F, Couzi M, V. Rodriguez and Richardson K C 2006 Mater. Chem. Phys. 97 64
|
[29] |
Petit L, Carlie N, Villeneuve R, Massera J, Couzi M, Humeau A, Boudebs G and Richardson K 2006 J. Non-Cryst. Solids 352 5413
|
[30] |
Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M and Frumar M 1998 J. Non-Cryst. Solids 226 85
|
[31] |
Zhang M J, Yang Z Y, Li L, Wang Y W, Qiu J H, Yang A P, Tao H Z and Tang D Y 2016 J. Non-Cryst. Solids 452 114
|
[32] |
Nazabal V, Charpentier F, Adam J L, Nemec P, Lhermite H, Brandily-Anne M L, Charrier J, Guin J P and Moréac A 2011 Int. J. Appl. Ceram. Tecnol. 8 990
|
[33] |
Guo H T, Zhai Y B, Tao H Z, Dong G P and Zhao X J 2007 Mater. Sci. Eng. B-Adv. 138 235
|
[34] |
Yang A P, Zhang M J, Li L, Wang Y W, Zhang B, Yang Z Y and Tang D Y 2016 J. Am. Ceram. Soc. 99 12
|
[35] |
Frumarová B, Nemec P, Frumar M and Oswald J 1998 Semiconductors 32 812
|
[36] |
Heo J, Yoon J M and Ryou S Y 1998 J. Non-Cryst. Solids 238 115
|
[37] |
Tao H Z, Mao S, Dong G P, Xiao H Y and Zhao X 2006 Solid State Commun. 137 408
|
[38] |
Guo H T, Tao H Z, Zhai Y B, Mao S and Zhao X J 2007 Spectrochim. Acta A 67 1351
|
[39] |
Hu J J, Tarasov V, Carlie N, Petit L, Agarwal A, Richardson K and Kimerling L 2008 Opt. Mater. 30 1560
|
[40] |
Lin C G, Li Z B, Ying L, Xu Y S, Zhang P Q, Dai S X, Xu T F and Nie Q H 2012 J. Phys. Chem. C 116 5862
|
[41] |
Kincl M and Tichy L 2007 Mater. Chem. Phys. 103 78
|
[42] |
Feltz A, Pohle M, Steil H and Herms G 1985 J. Non-Cryst. Solids 69 271
|
[43] |
Bayliss P and Nowacki W 1972 Z. Kristallogr 135 308
|
[44] |
Julien C, Barnier S, Massot M, Chbani N, Cai X, Loireau-Lozac'h A M and Guittard M 1994 Mater. Sci. Eng. B-Adv. 22 191
|
[45] |
Tverjanovich A, Tveryanovich Yu S and Loheider S 1996 J. Non-Cryst. Solids 208 49
|
[46] |
Feltz A 1993 Amorphous inorganic materials and glasses, VCH, 100
|
[47] |
Sen S and Aitken B G 2002 Phys. Rev. B 66 134204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|