Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057105    DOI: 10.1088/1674-1056/25/5/057105
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Homopolar bonds in Se-rich Ge—As—Se chalcogenide glasses

Si-Wei Xu(许思维)1,2, Rong-Ping Wang(王荣平)2, Zhi-Yong Yang(杨志勇)3, Li Wang(王丽)1, Luther-Davies Barry2
1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
2. Laser Physics Centre, Research School of Physical Science and Engineering, Australian National University, Canberra, ACT 0200, Australia;
3. College of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract  We have prepared three groups of Ge-As-Se glasses in which the Se content is 5.5 mol%, 10 mol%, and 20 mol% rich, respectively. We explored the possibility of suppressing the formation of the Ge-Ge and As-As homopolar bonds in the glasses. Thermal kinetics analysis indicated that the 5.5 mol% Se-rich Ge11.5As24Se64.5 glass exhibits the minimum fragility and thus is most stable against structural relaxation. Analysis of the Raman spectra of the glasses indicated that the Ge-Ge and As-As homopolar bonds could be almost completely suppressed in 20 mol% Se-rich Ge15As14Se71 glass.
Keywords:  chalcogenide glasses      structure      differential scanning calorimetry      Raman scattering  
Received:  02 December 2015      Revised:  06 January 2016      Accepted manuscript online: 
PACS:  71.23.Cq (Amorphous semiconductors, metallic glasses, glasses)  
  79.60.Ht (Disordered structures)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
  33.20.Fb (Raman and Rayleigh spectra (including optical scattering) ?)  
Fund: Project supported by the Australian Research Council (ARC) Centre of Excellence for Ultrahigh Bandwidth Device for Optical System (Project CE110001018), Australian Research Council Discovery Programs (Project DP110102753), and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China.
Corresponding Authors:  Rong-Ping Wang     E-mail:  rpw111@rsphysse.anu.edu.au

Cite this article: 

Si-Wei Xu(许思维), Rong-Ping Wang(王荣平), Zhi-Yong Yang(杨志勇), Li Wang(王丽), Luther-Davies Barry Homopolar bonds in Se-rich Ge—As—Se chalcogenide glasses 2016 Chin. Phys. B 25 057105

[1] Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publishing) pp. 97-141
[2] Tanaka K and Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp. 115-123
[3] Wang Z W, Wang X F, Liu C L, Zhao X J, Xiang H, Yu J G, Gong Q H and Gu S X 2005 Chin. Phys. B 14 0551
[4] Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H and Xu T F 2015 Acta Phys. Sin. 64 154216 (in Chinese)
[5] Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X and Xu T F 2011 Acta Phys. Sin. 60 114212 (in Chinese)
[6] Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[7] Zhang Z Y, Chen F, Lu S B, Wang Y H, Shen X, Dai S X and Nie Q H 2015 Chin. Phys. B 24 066801
[8] Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S and Luther-Davies B 2014 Opt. Mater. Express 4 1011
[9] Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B and Lucas P 2014 J. Phys. Chem. B 118 1436
[10] Wei W H, Wang R P, Shen X, Fang L and Luther-Davies B 2013 J. Phys. Chem. C 117 16571
[11] Bulla D A P, Wang R P, Prasad A, Rode A V, Madden S J and Luther-Davies B 2009 Appl. Phys. A 96 615
[12] Su X Q, Wang R P, Luther-Davies B and Wang L 2013 Appl. Phys. A 113 575
[13] Wang R P, Smith A, Luther-Davies B, Kokkonen H and Jackson I 2009 J. Appl. Phys. 105 056109
[14] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R P, Bulla D and Luther-Davies B 2010 Opt. Express 18 26635
[15] Prasad A, Zha C J, Wang R P, Smith A, Madden S and Luther-Davies B 2008 Opt. Express 16 2804
[16] Wang R P, Choi D Y, Rode A V, Madden S J and Luther-Davies B 2007 J. Appl. Phys. 101 113517
[17] Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C and Jain H 2014 J. Appl. Phys. 115 083518
[18] Xu S W, Wang R P, Yang Z Y, Wang L and Luther-Davies B 2015 Appl. Phys. Express 8 015504
[19] Popescu M A 2000 Non-Crystalline Chalcogenides (Dordrecht: Kluwer Academic Publishers) pp. 55-59
[20] Wang R P, Zha C J, Rode A V, Madden S J and Luther-Davies B 2007 J. Mater. Sci.: Mater. Electron. 18 S419
[21] Choi D Y, Madden S, Rode A, Wang R P and Luther-Davies B 2007 Appl. Phys. Lett. 91 011115
[22] Tronc P, Bensoussan M, Brenac A and Sebenne C 1973 Phys. Rev. B 8 5947
[23] Stevens M, Boolchand P and Hernandez J G 1985 Phys. Rev. B 31 981
[24] Kumagai N, Shirafuji J and Inuishi Y 1977 J. Phys. Soc. Jpn. 42 1262
[25] Jackson K, Briley A, Grossman S, Porezag D V and Pederson M R 1999 Phys. Rev. B 60 R14985
[26] Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C and Lucas P 2010 Phys. Rev. B 82 195206
[27] Li W, Seal S, Rivero C, Lopez C, Richardson K, Pope A, Schulte A, Myneni S, Jain H, Antoine K and Miller A C 2005 J. Appl. Phys. 98 053503
[28] Kohoutek T, Wagner T, Vlcek M, Vlcek M and Frumar M 2006 J. Non- Cryst. Solids 352 1563
[29] Lin F Y, Gulbiten O, Yang Z Y, Calvez L and Lucas P 2011 J. Phys. D 44 045404
[30] Bues W, Somer M and Brockner W 1980 Z. Naturforsch. 35b 1063
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[4] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[9] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[10] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[11] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[12] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[13] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[14] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[15] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
No Suggested Reading articles found!