Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077303    DOI: 10.1088/1674-1056/adc97f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of sputtering ambient with hydrogen gas on optoelectrical properties of Ta-doped tin oxide

Haozhen Li(李昊臻)1,2,4, Xingqian Chen(陈兴谦)1,2,4, Minqiu Du(杜敏求)1,4, Wei Chen(陈伟)2,3,†, and Xiaolong Du(杜小龙)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Guangdong SinoPrime Technology Co. Ltd., Dongguan 523808, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Ta-doped SnO$_{2}$ (TTO) is a suitable candidate to replace transparent conductive oxide (TCO) composed of expensive indium used for optoelectronics and silicon heterojunction solar cells fabricated below 200 ${^\circ}$C. However, TTO films fabricated by sputtering at low temperature still demonstrate too high resistance and optical absorptance for application in industry. In this study, we investigate the influence of sputtering ambient on the optoelectrical properties of TTO films. The addition of hydrogen and oxygen to argon during sputtering leads to a large improvement in the optoelectrical properties of TTO films. The best TTO film has a low average absorptance of 1.9% and a low resistance of $3.8\times 10^{-3}$ $\Omega \cdot$cm with a high carrier density of $9.3\times 10^{19}$ cm$^{-3}$ and mobility of 17.8 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$. The microstructural and compositional properties of TTO films were characterized using x-ray diffraction, x-ray photoelectron spectroscopy and UV-Vis spectrophotometry. A proper ratio of hydrogen to oxygen in the sputtering gas improves the crystallinity and the doping efficiency of Ta. Optical absorptance is also reduced with suppressed formation of Sn(II) in the TTO films. Therefore, our findings exhibit remarkable potential for the industrial application of TTO as a low-cost TCO.
Keywords:  transparent conductive oxide (TCO)      magnetron sputtering      ambient      Ta-doped SnO$_{{2}}$      H$_{2}$  
Received:  19 February 2025      Revised:  02 April 2025      Accepted manuscript online:  07 April 2025
PACS:  73.61.-r (Electrical properties of specific thin films)  
  78.66.-w (Optical properties of specific thin films)  
  01.50.ff (Films; electronic video devices)  
  68.35.bg (Semiconductors)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2021B0101260001) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110411).
Corresponding Authors:  Wei Chen, Xiaolong Du     E-mail:  wchen@sslab.org.cn;xldu@iphy.ac.cn

Cite this article: 

Haozhen Li(李昊臻), Xingqian Chen(陈兴谦), Minqiu Du(杜敏求), Wei Chen(陈伟), and Xiaolong Du(杜小龙) Influence of sputtering ambient with hydrogen gas on optoelectrical properties of Ta-doped tin oxide 2025 Chin. Phys. B 34 077303

[1] De Wolf S, Descoeudres A, Holman Z C and Ballif C 2012 Highefficiency Silicon Heterojunction Solar Cells: A Review Green 2 7
[2] Ellmer K 2012 Nat. Photon. 6 809
[3] Li M, Mo C, Ji P, Zhang X, Chen J, Zhuge L, Wu X, Tan H and Huang T 2024 Chin. Phys. B 33 108102
[4] Kostlin H, Jost R and Lems W 1975 Phys. Stat. Sol. (a) 29 87
[5] Yao J K and Zhong W S 2023 Chin. Phys. B 32 018101
[6] Ellmer K, Klein A and Rech B 2008 Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells Vol. 104 (Berlin, Heidelberg: Springer Berlin Heidelberg)
[7] Yu C, Gao K, Peng C W, et al. 2023 Nat. Energy 8 1375
[8] Batzill M and Diebold U 2005 Progress in Surface Science 79 47
[9] Yu C, Gao K, Peng C W, et al. 2023 Nat Energy 8 1375
[10] Wang X, Faizan M, Zhou K, Wang X, Fu Y and Zhang L 2024 Chin. Phys. B 33 107303
[11] Swallow J E N, Williamson B A D, Whittles T J, Birkett M, Featherstone T J, Peng N, Abbott A, Farnworth M, Cheetham K J, Warren P, Scanlon D O, Dhanak V R and Veal T D 2018 Adv. Funct. Mater. 28 1701900
[12] Williamson B A D, Featherstone T J, Sathasivam S S, Swallow J E N, Shiel H, Jones L A H, Smiles M J, Regoutz A, Lee T L, Xia X, Blackman C, Thakur P K, Carmalt C J, Parkin I P, Veal T D and Scanlon D O 2020 Chem. Mater. 32 1964
[13] So H S, Park J W, Jung D H, Ko K H and Lee H 2015 J. Appl. Phys. 118 085303
[14] Al-Kuhaili M F 2021 Materials Chemistry and Physics 257 123749
[15] Fukumoto M, Nakao S, Shigematsu K, Ogawa D, Morikawa K, Hirose Y and Hasegawa T 2020 Sci. Rep. 10 6844
[16] Uwihoreye V, Yang Z, Zhang J Y, Lin Y M, Liang X, Yang L and Zhang K H L 2023 Sci. China Mater. 66 264
[17] Weidner M, Jia J, Shigesato Y and Klein A 2016 Physica Status Solidi (b) 253 923
[18] Morán-Pedroso M, Sánchez-Marcos J, de Andrés A and Prieto C 2018 Applied Surface Science 459 349
[19] Wu F, Tong X, Zhao Z, Gao J, Zhou Y and Kelly P 2017 J. Alloys Compd. 695 765
[20] Holleman A F,Wiberg E,Wiberg N, Eagleson M, BrewerWand Aylett B J 2001 Holleman-Wiberg Inorganic Chemistry (London: Academic) pp. 900-911
[21] Singh A K, Janotti A, Scheffler M and Van De Walle C G 2008 Phys. Rev. Lett. 101 055502
[22] Liu L Z, Xu J Q, Wu X L, Li T H, Shen J C and Chu P K 2013 Appl. Phys. Lett. 102 031916
[23] Singh A V, Mehra R M, Yoshida A andWakahara A 2004 J. Appl. Phys. 95 3640
[24] Galazka Z, Uecker R, Klimm D, Irmscher K, Pietsch M, Schewski R, Albrecht M, Kwasniewski A, Ganschow S, Schulz D, Guguschev C, Bertram R, Bickermann M and Fornari R 2014 Physica Status Solidi (a) 211 66
[25] Trani F, Causà M, Ninno D, Cantele G and Barone V 2008 Phys. Rev. B 77 245410
[26] Luo H, Liang L Y, Cao H T, Liu Z M and Zhuge F 2012 ACS Appl. Mater. Interfaces 4 5673
[27] Szuber J, Czempik G, Larciprete R, Koziej D and Adamowicz B 2001 Thin Solid Films 391 198
[28] Weidner M, Brötz J and Klein A 2014 Thin Solid Films 555 173
[29] Nakao S, Yamada N, Hitosugi T, Hirose Y, Shimada T and Hasegawa T 2010 Thin Solid Films 518 3093
[30] Geurts J, Rau S, RichterWand Schmitte F J 1984 Thin Solid Films 121 217
[31] Kılıç Ç and Zunger A 2002 Phys. Rev. Lett. 88 095501
[1] Unraveling the role of dangling bonds passivation in amorphous Ga2O3 for high-performance solar-blind UV detection
Zhengru Li(李正濡), Rui Zhu(朱锐), Huili Liang(梁会力), Shichen Su(宿世臣), and Zengxia Mei(梅增霞). Chin. Phys. B, 2025, 34(7): 078502.
[2] Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar. Chin. Phys. B, 2025, 34(6): 066302.
[3] Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation, energy omission
Saleem Nasir, Sekson Sirisubtawee, Pongpol Juntharee, and Taza Gul. Chin. Phys. B, 2024, 33(5): 050204.
[4] Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions
Maoyang Li(李茂洋), Chaochao Mo(莫超超), Peiyu Ji(季佩宇), Xiaoman Zhang(张潇漫), Jiali Chen(陈佳丽), Lanjian Zhuge(诸葛兰剑), Xuemei Wu(吴雪梅), Haiyun Tan(谭海云), and Tianyuan Huang(黄天源). Chin. Phys. B, 2024, 33(10): 108102.
[5] Fast estimation of distance between two hydrophones using ocean ambient noise in multi-ship scenarios
Xuefeng Liu(刘雪枫), Zhi Xia(夏峙), Qi Li(李琪), and Ye Ding(丁烨). Chin. Phys. B, 2023, 32(12): 124301.
[6] Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering
Xinke Liu(刘新科), Zhichen Lin(林之晨), Yuheng Lin(林钰恒), Jianjin Chen(陈建金), Ping Zou(邹苹), Jie Zhou(周杰), Bo Li(李博), Longhai Shen(沈龙海), Deliang Zhu(朱德亮), Qiang Liu(刘强), Wenjie Yu(俞文杰), Xiaohua Li(黎晓华), Hong Gu(顾泓), Xinzhong Wang(王新中), and Shuangwu Huang(黄双武). Chin. Phys. B, 2023, 32(11): 117701.
[7] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[8] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[9] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[10] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[11] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[12] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[13] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[14] Influence of low ambient pressure on the performance of a high-energy array surface arc plasma actuator
Bing-Liang Tang(唐冰亮), Shan-Guang Guo(郭善广), Hua Liang(梁华)†, and Meng-Xiao Tang(唐孟潇). Chin. Phys. B, 2020, 29(10): 105204.
[15] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
No Suggested Reading articles found!