Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027301    DOI: 10.1088/1674-1056/ad9e96
Special Issue: TOPICAL REVIEW — Moiré physics in two-dimensional materials
TOPICAL REVIEW — Moiré physics in two-dimensional materials Prev   Next  

Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties

Zi-Yi Tian(田子弈)1, Si-Yu Li(李思宇)2, Hai-Tao Zhou(周海涛)3,†, Yu-Hang Jiang(姜宇航)1,‡, and Jin-Hai Mao(毛金海)4,§
1 College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing 100095, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Moiré superlattices have revolutionized the study of two-dimensional materials, enabling unprecedented control over their electronic, magnetic, optical, and mechanical properties. This review provides a comprehensive analysis of the latest advancements in moiré physics, focusing on the formation of moiré superlattices due to rotational misalignment or lattice mismatch in two-dimensional materials. These superlattices induce flat band structures and strong correlation effects, leading to the emergence of exotic quantum phases, such as unconventional superconductivity, correlated insulating states, and fractional quantum anomalous Hall effects. The review also explores the underlying mechanisms of these phenomena and discusses the potential technological applications of moiré physics, offering insights into future research directions in this rapidly evolving field.
Keywords:  two-dimensional quantum material      moiré superlattice      flat band      strong correlations  
Received:  09 September 2024      Revised:  04 December 2024      Accepted manuscript online:  13 December 2024
PACS:  73.21.Cd (Superlattices)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0307800), the National Natural Science Foundation of China (Grant No. 12074377), Fundamental Research Funds for the Central Universities, the International Partnership Program of Chinese Academy of Sciences (Grant No. 211211KYSB20210007), the China Postdoctoral Science Foundation (Grant No. 2024M753465), the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20241893).
Corresponding Authors:  Hai-Tao Zhou, Yu-Hang Jiang, Jin-Hai Mao     E-mail:  13811517657@139.com;yuhangjiang@ucas.ac.cn;jhmao@ucas.ac.cn

Cite this article: 

Zi-Yi Tian(田子弈), Si-Yu Li(李思宇), Hai-Tao Zhou(周海涛), Yu-Hang Jiang(姜宇航), and Jin-Hai Mao(毛金海) Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties 2025 Chin. Phys. B 34 027301

[1] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J,Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
[2] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, et al. 2013 Nature 497 598
[3] Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C, Wallbank J, et al. 2013 Nature 497 594
[4] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[5] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, et al. 2013 Nat. Mater. 12 792
[6] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[7] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D,Watanabe K, Taniguchi T, Kaxiras E, et al. 2018 Nature 556 80
[8] Schmidt H, Luedtke T, Barthold P, Mccann E, Fal’Ko V I and Haug R J 2008 Appl. Phys. Lett. 93 666
[9] Wang H, Ma S, Zhang S and Lei D 2022 Light: Sci. Appl. 11 159
[10] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardière G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[11] Lopes dos Santos JMB, Peres NMR and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
[12] Gorbachev R V, Riaz I, Nair R R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K and Taniguchi T 2011 Small 7 465
[13] Woods C, Britnell L, Eckmann A, Ma R, Lu J, Guo H, Lin X, Yu G, Cao Y, Gorbachev R V, et al. 2014 Nat. Phys. 10 451
[14] Woods C, Withers F, Zhu M, Cao Y, Yu G, Kozikov A, Ben Shalom M, Morozov S, Van Wijk M, Fasolino A, et al. 2016 Nat. Commun. 7 10800
[15] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, et al. 2019 Nat. Mater. 18 448
[16] Yankowitz M, Watanabe K, Taniguchi T, San-Jose P and LeRoy B J 2016 Nat. Commun. 7 13168
[17] Rosenberger M R, Chuang H J, Phillips M, Oleshko V P, McCreary K M, Sivaram S V, Hellberg C S and Jonker B T 2020 ACS Nano 14 4550
[18] Butz B, Dolle C, Niekiel F,Weber K,Waldmann D,Weber H B, Meyer B and Spiecker E 2014 Nature 505 533
[19] Lin J, Fang W, Zhou W, Lupini A R, Idrobo J C, Kong J, Pennycook S J and Pantelides S T 2013 Nano Lett. 13 3262
[20] Van Hove L 1953 Phys. Rev. 89 1189
[21] He W Y, Su Y, Yang M and He L 2014 Phys. Rev. B 89 125418
[22] He W Y, Chu Z D and He L 2013 Phys. Rev. Lett. 111 066803
[23] Li G, Luican A, Lopes dos Santos J, Castro Neto A, Reina A, Kong J and Andrei E 2010 Nat. Phys. 6 109
[24] Cherkez V, de Laissardi‘ere G T, Mallet P and Veuillen J Y 2015 Phys. Rev. B 91 155428
[25] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802
[26] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Science 324 924
[27] Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C and He L 2015 Phys. Rev. B 92 201408
[28] Wong D, Wang Y, Jung J, Pezzini S, DaSilva A M, Tsai H Z, Jung H S, Khajeh R, Kim Y, Lee J, Kahn S, Tollabimazraehno S, Rasool H, Watanabe K, Taniguchi T, Zettl A, Adam S, MacDonald A H and Crommie M F 2015 Phys. Rev. B 92 155409
[29] Yan W, Meng L, Liu M, Qiao J B, Chu Z D, Dou R F, Liu Z, Nie J C, Naugle D G and He L 2014 Phys. Rev. B 90 115402
[30] Laissardi‘ere G T D, Mayou D and Magaud L 2010 Nano Lett. 10 804
[31] Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C and He L 2012 Phys. Rev. Lett. 109 126801
[32] Nandkishore R, Levitov L S and Chubukov A V 2012 Nat. Phys. 8 158
[33] Kim K, Coh S, Tan L Z, Regan W, Yuk J M, Chatterjee E, Crommie M F, CohenML, Louie S G and Zettl A 2012 Phys. Rev. Lett. 108 246103
[34] Yuan N F, Isobe H and Fu L 2019 Nat. Commun. 10 5769
[35] Park C H, Yang L, Son Y W, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 126804
[36] Wolf T M R, Zilberberg O, Levkivskyi I and Blatter G 2018 Phys. Rev. B 98 125408
[37] Ortix C, Yang L and van den Brink J 2012 Phys. Rev. B 86 081405
[38] Park C H, Yang L, Son Y W, Cohen M L and Louie S G 2008 Nat. Phys. 4 213
[39] Wallbank J R, Patel A A, Mucha-Kruczyński M, Geim A K and Fal’ko V I 2013 Phys. Rev. B 87 245408
[40] Wang E, Lu X, Ding S, YaoW, Yan M,Wan G, Deng K,Wang S, Chen G, Ma L, et al. 2016 Nat. Phys. 12 1111
[41] Yan H, Chu Z D, YanW, Liu M, Meng L, Yang M, Fan Y,Wang J, Dou R F, Zhang Y, Liu Z, Nie J C and He L 2013 Phys. Rev. B 87 075405
[42] Checkelsky J G, Bernevig B A, Coleman P, Si Q and Paschen S 2024 Nat. Rev. Mater. 9 509
[43] Bistritzer R and MacDonald A H 2011 Proc. Nat. Acad. Sci. USA 108 12233
[44] Wu F, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett. 121 026402
[45] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, et al. 2019 Nat. Phys. 15 1174
[46] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91
[47] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, et al. 2019 Nature 572 95
[48] Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2019 Nature 572 101
[49] Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H and Tutuc E 2017 Proc. Nat. Acad. Sci. USA 114 3364
[50] Mott N 1990 J. Solid State Chem. 88 5
[51] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 Nature 583 215
[52] Cao Y, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 595 526
[53] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, et al. 2021 Nat. Phys. 17 374
[54] Su R, Kuiri M, Watanabe K, Taniguchi T and Folk J 2023 Nat. Mater. 22 1332
[55] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 592 43
[56] Lu X, Stepanov P, YangW, Xie M, AamirMA, Das I, Urgell C,Watanabe K, Taniguchi T, Zhang G, et al. 2019 Nature 574 653
[57] Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, et al. 2020 Nature 583 379
[58] Saito Y, Ge J,Watanabe K, Taniguchi T and Young A F 2020 Nat. Phys. 16 926
[59] Stepanov P, Das I, Lu X, Fahimniya A,Watanabe K, Taniguchi T, Koppens F H, Lischner J, Levitov L and Efetov D K 2020 Nature 583 375
[60] Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R and Hone J 2019 Nat. Nanotechnol. 14 1029
[61] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059
[62] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[63] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[64] Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R and Young A F 2019 Nat. Phys. 15 1011
[65] Codecido E, Wang Q, Koester R, Che S, Tian H, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, et al. 2019 Sci. Adv. 5 eaaw9770
[66] Bruin J A N, Sakai H, Perry R S and Mackenzie A 2013 Science 339 804
[67] Cao Y, Rodan-Legrain D, Park J M, Yuan N F, Watanabe K, Taniguchi T, Fernandes R M, Fu L and Jarillo-Herrero P 2021 Science 372 264
[68] Comin R, Sutarto R, He F, da Silva Neto E, Chauviere L, Frano A, Liang R, Hardy W, Bonn D, Yoshida Y, et al. 2015 Nat. Mater. 14 796
[69] Mukhopadhyay S, Sharma R, Kim C K, Edkins S D, Hamidian M H, Eisaki H, Uchida S i, Kim E A, LawlerMJ, Mackenzie A P, et al. 2019 Proc. Nat. Acad. Sci. USA 116 13249
[70] Wu F, Hwang E and Das Sarma S 2019 Phys. Rev. B 99 165112
[71] Sharma G, Yudhistira I, Chakraborty N, Ho D Y, Ezzi M A, Fuhrer M S, Vignale G and Adam S 2021 Nat. Commun. 12 5737
[72] Adak P C, Sinha S, Ghorai U, Sangani L D V, Watanabe K, Taniguchi T, Sensarma R and Deshmukh M M 2020 Phys. Rev. B 101 125428
[73] Burg GW, Zhu J, Taniguchi T,Watanabe K, MacDonald A H and Tutuc E 2019 Phys. Rev. Lett. 123 197702
[74] He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Phys. 17 26
[75] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, et al. 2020 Nature 583 221
[76] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, et al. 2020 Nat. Phys. 16 520
[77] Zhang C, Zhu T, Kahn S, Li S, Yang B, Herbig C, Wu X, Li H, Watanabe K, Taniguchi T, et al. 2021 Nat. Commun. 12 2516
[78] Yang W and Zhang G 2023 Nat. Mater. 22 1285
[79] Zhu Z, Carr S, Massatt D, Luskin M and Kaxiras E 2020 Phys. Rev. Lett. 125 116404
[80] Khalaf E, Kruchkov A J, Tarnopolsky G and Vishwanath A 2019 Phys. Rev. B 100 085109
[81] Li X, Wu F and MacDonald A H 2019 Electronic Structure of Singletwist Trilayer Graphene
[82] Liu X, Zhang N J, Watanabe K, Taniguchi T and Li J 2022 Nat. Phys. 18 522
[83] Khalaf E, Chatterjee S, Bultinck N, Zaletel M P and Vishwanath A 2021 Sci. Adv. 7 eabf5299
[84] Fischer A, Goodwin Z A, Mostofi A A, Lischner J, Kennes D M and Klebl L 2022 npj Quantum Mater. 7 5
[85] Polshyn H, Zhu J, KumarMA, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, et al. 2020 Nature 588 66
[86] Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, et al. 2021 Nat. Phys. 17 619
[87] Polshyn H, Zhang Y, Kumar M A, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel M P and Young A F 2022 Nat. Phys. 18 42
[88] He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X and Yankowitz M 2021 Nat. Commun. 12 4727
[89] Tong L H, Tong Q, Yang L Z, Zhou Y Y,Wu Q, Tian Y, Zhang L, Zhang L, Qin Z and Yin L J 2022 Phys. Rev. Lett. 128 126401
[90] Li S Y, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H J, et al. 2022 Nat. Commun. 13 4225
[91] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 588 610
[92] Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601
[93] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2021 Nat. Phys. 17 710
[94] Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, et al. 2021 Chin. Phys. Lett. 38 047301
[95] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021
[96] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, et al. 2021 Nature 589 536
[97] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2021 Nat. Phys. 17 478
[98] Stepanov P, Xie M, Taniguchi T, Watanabe K, Lu X, MacDonald A H, Bernevig B A and Efetov D K 2021 Phys. Rev. Lett. 127 197701
[99] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2021 Nat. Mater. 20 488
[100] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, et al. 2020 Nature 579 56
[101] Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, et al. 2021 Nat. Phys. 17 1210
[102] Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, et al. 2021 Nature 600 439
[103] Ledwith P J, Tarnopolsky G, Khalaf E and Vishwanath A 2020 Phys. Rev. Res. 2 023237
[104] Abouelkomsan A, Liu Z and Bergholtz E J 2020 Phys. Rev. Lett. 124 106803
[105] Bhowmik S, Ghawri B, Leconte N, Appalakondaiah S, Pandey M, Mahapatra P S, Lee D, Watanabe K, Taniguchi T, Jung J, et al. 2022 Nat. Phys. 18 639
[106] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[107] Qi X L, Wu Y S and Zhang S C 2006 Phys. Rev. B 74 085308
[108] Liu C X, Zhang S C and Qi X L 2016 Ann. Rev. Condens. Matter Phys. 7 301
[109] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[110] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[111] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, et al. 2021 Nature 600 641
[112] Lu Z, Han T, Yao Y, Reddy A P, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L and Ju L 2024 Nature 626 759
[113] Tseng C C, Ma X, Liu Z, Watanabe K, Taniguchi T, Chu J H and Yankowitz M 2022 Nat. Phys. 18 1038
[114] Geisenhof F R, Winterer F, Seiler A M, Lenz J, Xu T, Zhang F and Weitz R T 2021 Nature 598 53
[115] Liu Y, Stradins P and Wei S H 2016 Sci. Adv. 2 e1600069
[116] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z,Wang J, Chen X H and Zhang Y 2020 Science 367 895
[117] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, et al. 2013 Science 340 167
[118] Cai J, Anderson E, Wang C, Zhang X, Liu X, Holtzmann W, Zhang Y, Fan F, Taniguchi T, Watanabe K, et al. 2023 Nature 622 63
[119] Xu F, Sun Z, Jia T, Liu C, Xu C, Li C, Gu Y,Watanabe K, Taniguchi T, Tong B, et al. 2023 Phys. Rev. X 13 031037
[1] Optical signature of flat bands in topological hourglass semimetal Nb3SiTe6
Shize Cao(曹仕泽), Cuiwei Zhang(张翠伟), Yueshan Xu(徐越山), Jianzhou Zhao(赵建洲), Youguo Shi(石友国), Yun-Ze Long(龙云泽), Jianlin Luo(雒建林), and Zhi-Guo Chen(谌志国). Chin. Phys. B, 2025, 34(2): 027101.
[2] Orbital XY models in moiré superlattices
Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达). Chin. Phys. B, 2025, 34(2): 027303.
[3] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[4] Moiré superlattices arising from growth induced by screw dislocations in layered materials
Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Chin. Phys. B, 2024, 33(7): 077403.
[5] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[6] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[7] Visualizing the electronic structure of kagome magnet LuMn6Sn6 by angle-resolved photoemission spectroscopy
Man Li(李满), Qi Wang(王琦), Liqin Zhou(周丽琴), Wenhua Song(宋文华), Huan Ma(马欢), Pengfei Ding(丁鹏飞), Alexander Fedorov, Yaobo Huang(黄耀波), Bernd Büchner, Hechang Lei(雷和畅), Shancai Wang(王善才), and Rui Lou(娄睿). Chin. Phys. B, 2024, 33(11): 117101.
[8] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[9] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[10] Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity
Atanu Nandy. Chin. Phys. B, 2023, 32(12): 127201.
[11] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[12] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[13] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[14] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[15] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
No Suggested Reading articles found!