Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇)1,2, Xinliang Huang(黄新亮)2, Jinglei Zhang(张警蕾)2, Wenshuai Gao(高文帅)1,†, Xiangde Zhu(朱相德)2,‡, and Li Pi(皮雳)2
1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei 230031, China
Abstract The binary pnictide semimetals have attracted considerable attention due to their fantastic physical properties that include topological effects, negative magnetoresistance, Weyl fermions, and large non-saturation magnetoresistance. In this paper, we have successfully grown the high-quality V1-δSb2 single crystals by Sb flux method and investigated their electronic transport properties. A large positive magnetoresistance that reaches 477% under a magnetic field of 12 T at T = 1.8 K was observed. Notably, the magnetoresistance showed a cusp-like feature at the low magnetic fields and such feature weakened gradually as the temperature increased, which indicated the presence of a weak antilocalization effect (WAL). In addition, based upon the experimental and theoretical band structure calculations, V1-δSb2 is a research candidate for a flat band.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032214, U2032163, and 11904002), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017483), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA15).
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳) Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal 2022 Chin. Phys. B 31 037102
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys.82 3045 [2] Qi X and Zhang S 2011 Rev. Mod. Phys.83 1057 [3] Ando Y 2013 J. Phys. Soc. Jpn.82 102001 [4] Ando Y and Fu L 2015 Annu. Rev. Condens. Matter Phys.6 361 [5] Moore J E 2010 Nature464 194 [6] Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X and and Xue Q K 2009 Phys. Rev. Lett.103 266803 [7] Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J and Yazdani A 2009 Nature460 1106 [8] Xu C, Chen J, Zhi G, Li Y, Dai J and Cao C 2016 Phys. Rev. B93 195106 [9] Liu X Y, Wang J L, You W, Wang T T, Yang H Y, Jiao W H, Mao H Y, Zhang L, Cheng J and Li Y K 2017 Chin. Phys. Lett.34 127501 [10] Wang H, Su H, Zhang J, Xia W, Lin Y, Liu X, Hou X, Yu Z, Yu N, Wang X, Zou Z, Wang Y, Liang Q, Zhen Y and Guo Y 2019 Phys. Rev. B100 115127 [11] Peramaiyan G, Sankar R, Muthuselvam I P and Lee W L 2018 Sci. Rep.8 6414 [12] Wang Y, Yu Q, Guo P, Liu K and Xia T 2016 Phys. Rev. B94 041103 [13] Yuan Z, Lu H, Liu Y, Wang J and Jia S 2016 Phys. Rev. B93 184405 [14] Wu D, Liao J, Yi W, Wang X, Li P, Weng H, Shi Y, Li Y, Luo J, Dai X and Fang Z 2016 Appl. Phys. Lett.108 042105 [15] Leahy I A, Lin Y P, Siegfried P E, Treglia A C, Song J C W, Nandkishore R M and Lee M 2018 Proc. Natl. Acad. Sci. USA115 10570 [16] Chen S, Lou Z, Zhou Y, Chen Q, Xu B, Wu C, Du J, Yang J, Wang H and Fang M 2021 Chin. Phys. Lett.38 017202 [17] Luo Y, McDonald R D, Rosa P F, Scott B, Wakeham N, Ghimire N J, Bauer E D, Thompson J D and Ronning F 2016 Sci. Rep.6 27294 [18] Li Y, Li L, Wang J, Wang T, Xu X, Xi C, Cao C and Dai J 2016 Phys. Rev. B94 121115 [19] Shen B, Deng X, Kotliar G and Ni N 2016 Phys. Rev. B93 195119 [20] Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun.8 1642 [21] Malki S and El Farh L 2020 Int. J. Thermophys.41 58 [22] Failamani F, Broz P, Macció D, Puchegger S, Müller H, Salamakha L, Michor H, Grytsiv A, Saccone A, Bauer E, Giester G and Rogl P 2015 Intermetallics65 94 [23] Harimohan V, Bharathi A, Babu P D, Rajaraman R and Sundar C S 2020 AIP Conf. Proc.2265 030428 [24] Canfield P C 2020 Rep. Prog. Phys.83 016501 [25] Wang V, Xu N, Liu J C, Tang G and Geng W 2021 Comput. Phys. Commun.267 108033 [26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [27] Malki S and EL Farh L 2019 Materials Today-Proceedings13 991 [28] Havinga E E, Damsma H and Hokkeling P 1972 Journal of the Less Common Metals27 169 [29] Armbrüster M, Schnelle W, Schwarz U and Grin Y 2007 Inorg. Chem.46 6319 [30] Wang K, Graf D, Li L, Wang L and Petrovic C 2014 Sci. Rep.4 7328 [31] Zhang C L, Yuan Z J, Jiang Q D, Tong B B, Zhang C, Xie X C and Jia S 2017 Phys. Rev. B95 085202 [32] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z K, Chen Y L, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B H 2015 Nat. Phys.11 645 [33] Zhang K, Du Y, Wang P, Wei L, Li L, Zhang Q, Qin W, Lin Z, Cheng B, Wang Y, Xu H, Fan X, Sun Z, Wan X and Zeng C 2020 Chin. Phys. Lett.37 090301 [34] Chen Q, Zhou Y, Xu B, Lou Z, Chen H, Chen S, Wu C, Du J, Wang H, Yang J and Fang M 2021 Chin. Phys. Lett.38 087501 [35] Hou Z, Wang Y, Liu E, Zhang H, Wang W and Wu G 2015 Appl. Phys. Lett.107 202103 [36] Zhang J, Hou Z, Zhang C, Chen J, Li P, Wen Y, Zhang Q, Wang W and Zhang X 2019 Appl. Phys. Lett.115 172407 [37] Hou Z, Wang Y, Xu G, Zhang X, Liu E, Wang W, Liu Z, Xi X, Wang W and Wu G 2015 Appl. Phys. Lett.106 102102 [38] Wang X, Du Y, Dou S and Zhang C 2012 Phys. Rev. Lett.108 266806 [39] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett.105 176602 [40] Lu H Z and Shen S 2011 Phys. Rev. B84 125138 [41] Liu W E, Hankiewicz E M and Culcer D 2017 Materials 10 807 [42] Bergmann G 1984 Phys. Rep.107 1 [43] Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Oh S 2011 Phys. Rev. B84 073109 [44] Shrestha K, Graf D, Marinova V, Lorenz B and Chu C W 2017 J. Appl. Phys.122 145901 [45] He H, Wang G, Zhang T, Sou I K, Wong G K L, Wang J, Lu H, Shen S and Zhang F 2011 Phys. Rev. Lett.106 166805 [46] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys.8 887 [47] Xu G, Wang W, Zhang X, Du Y, Liu E, Wang S, Wu G, Liu Z and Zhang X X 2014 Sci. Rep.4 5709 [48] Wang W, Du Y, Xu G, Zhang X, Liu E, Liu Z, Shi Y, Chen J, Wu G and Zhang X 2013 Sci. Rep.3 2181 [49] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys.63 707 [50] Blundell S and Thouless D 2003 Am. J. Phys71 94 [51] Kittel C 2004 Introduction to Solid State Physics (Chichester:John Wiley & Sons) p. 301 [52] Tari A 2003 The Specific Heat of Matter at Low Temperatures (London:Imperial College Press) pp. 60-150
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.