Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027202    DOI: 10.1088/1674-1056/ad9ffd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Disentangling electronic and phononic thermal transport across two-dimensional interfaces

Linxin Zhai(翟麟鑫) and Zhiping Xu(徐志平)†
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  Electrical and thermal transport at two-dimensional (2D) interfaces is critical for semiconductor technology, yet their interplay remains unclear. We report a theoretical proposal to separate electronic and phononic contributions to thermal conductance at 2D interfaces with graphene, which is validated by non-equilibrium Green's function calculations and molecular dynamics simulations for graphene-gold contacts. Our results reveal that while metal-graphene interfaces are transparent for both electrons and phonons, non-covalent graphene interfaces block electronic tunneling beyond two layers but not phonon transport. This suggests that the Wiedemann-Franz law can be experimentally tested by measuring transport across interfaces with varying graphene layers.
Keywords:  electrical and thermal transport      2D interfaces      Wiedemann-Franz law      theoretical proposal  
Received:  14 November 2024      Revised:  12 December 2024      Accepted manuscript online:  17 December 2024
PACS:  72.80.Vp (Electronic transport in graphene)  
  05.60.Gg (Quantum transport)  
  65.80.Ck (Thermal properties of graphene)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12425201 and 52090032) and the National Key Basic Research Program of China (Grant No. 2022YFA1205400).
Corresponding Authors:  Zhiping Xu     E-mail:  xuzp@tsinghua.edu.cn

Cite this article: 

Linxin Zhai(翟麟鑫) and Zhiping Xu(徐志平) Disentangling electronic and phononic thermal transport across two-dimensional interfaces 2025 Chin. Phys. B 34 027202

[1] Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, et al. 2021 Nat. Electron. 4 786
[2] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Nature 603 259
[3] Xu Z 2016 Theo. Appl. Mech. Lett. 6 113
[4] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Phys. Rep. 860 1
[5] Geim A K 2009 Science 324 1530
[6] Lim S, Park H, Yamamoto G, Lee C and Suk J W 2021 Nanomaterials 11 2575
[7] Song X, Guo Z, Zhang Q, Zhou P, Bao W and Zhang D W 2017 Small 13 1700098
[8] Xia F, Wang H, Hwang J C, Neto A C and Yang L 2019 Nat. Rev. Phys. 1 306
[9] Geim A K and Grigorieva I V 2013 Nature 499 419
[10] Migliato Marega G, Ji H G, Wang Z, Pasquale G, Tripathi M, Radenovic A and Kis A 2023 Nat. Electron. 6 991
[11] Yan X, Zheng Z, Sangwan V K, Qian J H, Wang X, Liu S E, Watanabe K, Taniguchi T, Xu S Y, Jarillo-Herrero P, et al. 2023 Nature 624 551
[12] Ye F, Liu Q, Xu B, Feng P X L and Zhang X 2023 Small 19 2205726
[13] Wang Y and Xu Z 2014 Nat. Commun. 5 4297
[14] Wang Y, Qin Z, Buehler M J and Xu Z 2016 Nat. Commun. 7 12854
[15] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[16] Kwon G, Choi Y H, Lee H, Kim H S, Jeong J, Jeong K, Baik M, Kwon H, Ahn J, Lee E, et al. 2022 Nat. Electron. 5 241
[17] Wang Y and Xu Z 2016 ACS Appl. Mater. & Interf. 8 1970
[18] Bian J and Xu Z 2023 Nanotechnology 34 285701
[19] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S, et al. 2022 Chin. Phys. Lett. 39 127301
[20] Wang A and Qin T 2023 Chin. Phys. B 32 107301
[21] Huo D, Bai Y, Lin X, Deng J, Pan Z, Zhu C, Liu C and Zhang C 2023 Chin. Phys. B 32 056803
[22] Avouris P 2010 Nano Lett. 10 4285
[23] Xu Z and Buehler M J 2012 J. Phys. Condens. Matter 24 475305
[24] Yalon E, McClellan C J, Smithe K K, Munoz Rojo M, Xu R L, Suryavanshi S V, Gabourie A J, Neumann C M, Xiong F, Farimani A B, et al. 2017 Nano Lett. 17 3429
[25] Jones W and March N H 1985 Theoretical Solid State Physics (Courier Corporation)
[26] Chester G and Thellung A 1961 Proc. Phys. Soc. 77 1005
[27] Mahan G and Bartkowiak M 1999 Appl. Phys. Lett. 74 953
[28] Wilson R and Cahill D G 2012 Phys. Rev. Lett. 108 255901
[29] Burkle M and Asai Y 2018 Nano Lett. 18 7358
[30] Acharyya R, Nguyen H Y T, Loloee R, Pratt W, Bass J, Wang S and Xia K 2009 Appl. Phys. Lett. 94
[31] Bartkowiak M and Mahan G 2001 Semiconductors and Semimetals vol. 70 (Elsevier) pp. 245-271
[32] Craven G T and Nitzan A 2020 Nano Lett. 20 989
[33] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge University Press)
[34] García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerda J I, Corsetti F, et al. 2020 J. Chem. Phys. 152
[35] Paulsson M and Brandbyge M 2007 Phys. Rev. B 76 115117
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Giovannetti G, Khomyakov P A, Brocks G, Karpan V v, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[38] Plimpton S 1995 J. Comp. Phys. 117 1
[39] Sutton A and Chen J 1990 Phil. Mag. Lett. 61 139
[40] Lindsay L and Broido D 2010 Phys. Rev. B 81 205441
[41] Muller-Plathe F 1997 J. Chem. Phys. 106 6082
[42] Chen J J, Meng J, Zhou Y B, Wu H C, Bie Y Q, Liao Z M and Yu D P 2013 Nat. Commun. 4 1921
[43] Liu L, Kong L, Li Q, He C, Ren L, Tao Q, Yang X, Lin J, Zhao B, Li Z, et al. 2021 Nat. Electron. 4 342
[44] Yu Z, Huang X, Bian J, He Y, Lu X, Zheng Q and Xu Z 2024 Nano Lett. 24 12179
[45] Xu Z and Buehler M J 2010 J. Phys. Condens. Matter 22 485301
[46] Chen L, Huang Z and Kumar S 2014 RSC Adv. 4 35852
[1] Transport properties of CrP
Xuebo Zhou(周学博), Ping Zheng(郑萍), Wei Wu(吴伟), Yu Sui(隋郁), and Jianlin Luo(雒建林). Chin. Phys. B, 2023, 32(7): 076501.
[2] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[3] The Wiedemann–Franz law in a normal metal–superconductor junction
R Ghanbari and G Rashedi . Chin. Phys. B, 2011, 20(12): 127401.
No Suggested Reading articles found!