CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Disentangling electronic and phononic thermal transport across two-dimensional interfaces |
Linxin Zhai(翟麟鑫) and Zhiping Xu(徐志平)† |
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Electrical and thermal transport at two-dimensional (2D) interfaces is critical for semiconductor technology, yet their interplay remains unclear. We report a theoretical proposal to separate electronic and phononic contributions to thermal conductance at 2D interfaces with graphene, which is validated by non-equilibrium Green's function calculations and molecular dynamics simulations for graphene-gold contacts. Our results reveal that while metal-graphene interfaces are transparent for both electrons and phonons, non-covalent graphene interfaces block electronic tunneling beyond two layers but not phonon transport. This suggests that the Wiedemann-Franz law can be experimentally tested by measuring transport across interfaces with varying graphene layers.
|
Received: 14 November 2024
Revised: 12 December 2024
Accepted manuscript online: 17 December 2024
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
05.60.Gg
|
(Quantum transport)
|
|
65.80.Ck
|
(Thermal properties of graphene)
|
|
68.90.+g
|
(Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12425201 and 52090032) and the National Key Basic Research Program of China (Grant No. 2022YFA1205400). |
Corresponding Authors:
Zhiping Xu
E-mail: xuzp@tsinghua.edu.cn
|
Cite this article:
Linxin Zhai(翟麟鑫) and Zhiping Xu(徐志平) Disentangling electronic and phononic thermal transport across two-dimensional interfaces 2025 Chin. Phys. B 34 027202
|
[1] Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, et al. 2021 Nat. Electron. 4 786 [2] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Nature 603 259 [3] Xu Z 2016 Theo. Appl. Mech. Lett. 6 113 [4] Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N and Zhang G 2020 Phys. Rep. 860 1 [5] Geim A K 2009 Science 324 1530 [6] Lim S, Park H, Yamamoto G, Lee C and Suk J W 2021 Nanomaterials 11 2575 [7] Song X, Guo Z, Zhang Q, Zhou P, Bao W and Zhang D W 2017 Small 13 1700098 [8] Xia F, Wang H, Hwang J C, Neto A C and Yang L 2019 Nat. Rev. Phys. 1 306 [9] Geim A K and Grigorieva I V 2013 Nature 499 419 [10] Migliato Marega G, Ji H G, Wang Z, Pasquale G, Tripathi M, Radenovic A and Kis A 2023 Nat. Electron. 6 991 [11] Yan X, Zheng Z, Sangwan V K, Qian J H, Wang X, Liu S E, Watanabe K, Taniguchi T, Xu S Y, Jarillo-Herrero P, et al. 2023 Nature 624 551 [12] Ye F, Liu Q, Xu B, Feng P X L and Zhang X 2023 Small 19 2205726 [13] Wang Y and Xu Z 2014 Nat. Commun. 5 4297 [14] Wang Y, Qin Z, Buehler M J and Xu Z 2016 Nat. Commun. 7 12854 [15] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 [16] Kwon G, Choi Y H, Lee H, Kim H S, Jeong J, Jeong K, Baik M, Kwon H, Ahn J, Lee E, et al. 2022 Nat. Electron. 5 241 [17] Wang Y and Xu Z 2016 ACS Appl. Mater. & Interf. 8 1970 [18] Bian J and Xu Z 2023 Nanotechnology 34 285701 [19] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S, et al. 2022 Chin. Phys. Lett. 39 127301 [20] Wang A and Qin T 2023 Chin. Phys. B 32 107301 [21] Huo D, Bai Y, Lin X, Deng J, Pan Z, Zhu C, Liu C and Zhang C 2023 Chin. Phys. B 32 056803 [22] Avouris P 2010 Nano Lett. 10 4285 [23] Xu Z and Buehler M J 2012 J. Phys. Condens. Matter 24 475305 [24] Yalon E, McClellan C J, Smithe K K, Munoz Rojo M, Xu R L, Suryavanshi S V, Gabourie A J, Neumann C M, Xiong F, Farimani A B, et al. 2017 Nano Lett. 17 3429 [25] Jones W and March N H 1985 Theoretical Solid State Physics (Courier Corporation) [26] Chester G and Thellung A 1961 Proc. Phys. Soc. 77 1005 [27] Mahan G and Bartkowiak M 1999 Appl. Phys. Lett. 74 953 [28] Wilson R and Cahill D G 2012 Phys. Rev. Lett. 108 255901 [29] Burkle M and Asai Y 2018 Nano Lett. 18 7358 [30] Acharyya R, Nguyen H Y T, Loloee R, Pratt W, Bass J, Wang S and Xia K 2009 Appl. Phys. Lett. 94 [31] Bartkowiak M and Mahan G 2001 Semiconductors and Semimetals vol. 70 (Elsevier) pp. 245-271 [32] Craven G T and Nitzan A 2020 Nano Lett. 20 989 [33] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge University Press) [34] García A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerda J I, Corsetti F, et al. 2020 J. Chem. Phys. 152 [35] Paulsson M and Brandbyge M 2007 Phys. Rev. B 76 115117 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Giovannetti G, Khomyakov P A, Brocks G, Karpan V v, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803 [38] Plimpton S 1995 J. Comp. Phys. 117 1 [39] Sutton A and Chen J 1990 Phil. Mag. Lett. 61 139 [40] Lindsay L and Broido D 2010 Phys. Rev. B 81 205441 [41] Muller-Plathe F 1997 J. Chem. Phys. 106 6082 [42] Chen J J, Meng J, Zhou Y B, Wu H C, Bie Y Q, Liao Z M and Yu D P 2013 Nat. Commun. 4 1921 [43] Liu L, Kong L, Li Q, He C, Ren L, Tao Q, Yang X, Lin J, Zhao B, Li Z, et al. 2021 Nat. Electron. 4 342 [44] Yu Z, Huang X, Bian J, He Y, Lu X, Zheng Q and Xu Z 2024 Nano Lett. 24 12179 [45] Xu Z and Buehler M J 2010 J. Phys. Condens. Matter 22 485301 [46] Chen L, Huang Z and Kumar S 2014 RSC Adv. 4 35852 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|