Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 018502    DOI: 10.1088/1674-1056/ad9c44
RAPID COMMUNICATION Prev   Next  

Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor

Wentao Yu(于文韬)1, Long Zhao(赵龙)1, Yanfei Gao(高延飞)1, Shiping Gao(高石平)1, Yuekun Yang(杨悦昆)2, Chen Pan(潘晨)1,†, Shi-Jun Liang(梁世军)2,‡, and Bin Cheng(程斌)1,§
1 Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
Abstract  Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision. These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells. However, the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption, making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision. Here, we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe$_{2}$ with an asymmetric gate electrode, achieving high photovoltaic responsivity. By adjusting the gate voltage and keeping bias voltage zero, we can dynamically realize reconfigurable n$^-$-p and n$^-$-n homojunction states, as well as gate-tunable photovoltaic response characteristics that range from positive to negative. The maximum photovoltaic responsivity of the electrically tunable WSe$_{2}$ homojunction is approximately 0.4 A/W, which is significantly larger than the previously reported value $\sim 0.1 $ A/W in homojunction devices. In addition, the responsivity can be further enhanced to approximately 1.0 A/W when the n$^-$-p photodiode operates in reverse bias mode, enabling high-sensitivity detection of targets. Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology.
Keywords:  reconfigurable homojunction      in sensor computing      ambipolar material  
Received:  12 November 2024      Revised:  04 December 2024      Accepted manuscript online:  10 December 2024
PACS:  85.30.-z (Semiconductor devices)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375131, 62204119, 62122036, and 62304104), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220947), and the Funding of NJUST (Grant No. TSXK2022D008).
Corresponding Authors:  Chen Pan, Shi-Jun Liang, Bin Cheng     E-mail:  chenpan@njust.edu.cn;sjliang@nju.edu.cn;bincheng@njust.edu.cn

Cite this article: 

Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌) Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor 2025 Chin. Phys. B 34 018502

[1] Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Cheng K J, Wang Z L,Watanabe K, Taniguchi T, Liang S J and Miao F 2021 Natl. Sci. Rev. 8 nwaa172
[2] Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S and Ye L 2024 Nat. Commun. 15 8650
[3] Zhang Z, Wang S, Liu C, Xie R, Hu W and Zhou P 2021 Nat. Nanotechnol. 17 27
[4] Shang H, Hu Y, Gao F, Dai M, Zhang S, Wang S, Ouyang D, Li X, Song X, Gao B, Zhai T and Hu P 2022 ACS Nano 16 21293
[5] Pan X, Shi J W, Wang P F, Wang S, Pan C, Yu W T, Cheng B, Liang S J and Miao F 2023 Sci. Adv. 9 eadi4083
[6] Yang Y, Pan C, Li Y, Yangdong X,Wang P, Li Z A,Wang S, YuW, Liu G, Cheng B, Di Z, Liang S J and Miao F 2024 Nat. Electron. 7 225
[7] Dang Z Y, Guo F, Wang Z Q, Jie W J, Jin K, Chai Y and Hao J H 2024 ACS Nano 18 27727
[8] Cai Y C, Wang F, Wang X M, Li S H, Wang Y R, Yang J, Yan T, Zhan X Y, Wang F M, Cheng R Q, He J and Wang Z X 2023 Adv. Funct. Mater. 33 2212917
[9] Zeng S, Liu C, Huang X, Tang Z, Liu L and Zhou P 2022 Nat. Commun. 13 56
[10] Feng G, Zhang X, Tian B and Duan C 2023 InfoMat 5 e12473
[11] Yang Y, Zhao J, Liu Y, Hua X, Wang T, Zheng J, Hao Z, Xiong B, Sun C, Han Y, Wang J, Li H, Wang L and Luo Y 2024 Chin. Phys. B 33 030702
[12] Wang H, Song X, Li Z, Li D, Xu X, Chen Y, Liu P, Zhou X and Zhai T 2024 J. Semicond. 45 051701
[13] Wang C Y, Liang S J, Wang S, et al. 2020 Sci. Adv. 6 eaba6173
[14] Liao F, Zhou Z, Kim B J, Chen J, Wang J, Wan T, Zhou Y, Hoang A T, Wang C, Kang J, Ahn J H and Chai Y 2022 Nat. Electron. 5 84
[15] Zhou Y, Fu J W, Chen Z R, Zhuge F W, Wang Y S, Yan J M, Ma S J, Xu L, Yuan H M, Chan M S, Miao X S, He Y H and Chai Y 2023 Nat. Electron. 6 870
[16] Jin H, Park C, Byun H H, Park S H and Choi S Y 2023 ACS Photonics 10 3027
[17] Masanta S, Nayak C, Agarwal P, Das K and Singha A 2023 ACS Appl. Mater. Interfaces 15 14523
[18] Liu F, Lin X, Yan Y T, Gan X T, Cheng Y C and Luo X G 2023 Nano Lett. 23 11645
[19] Yang Y K, Wang X D, Wang C, Song Y X, Zhang M, Xue Z Y, Wang S M, Zhu Z Y S, Liu G Y, Li P L, Dong L X, Mei Y F, Chu W D, Hu J L, Wang and Di Z F 2020 Nano Lett. 20 3872
[20] Mak K F and Shan J 2016 Nat. Photon. 10 216
[21] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett 105 136805
[22] Xie C, Mak C, Tao XMand Yan F 2017 Adv. Funct. Mater. 27 1603886
[23] Jariwala D, Davoyan A R,Wong J and Atwater H A 2017 ACS Photonics 4 2962
[24] Wei X, Yan F G, Lv Q S, Shen C and Wang K Y 2017 Nanoscale 9 8388
[25] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
[26] Pospischil A, FurchiMMand Mueller T 2014 Nat. Nanotechnol. 9 257
[27] Zhao Y, Sun H, Sheng Z, Zhang W, Zhou P and Zhang Z 2023 Chin. Phys. B 32 128505
[28] Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E and De Micheli G 2018 ACS Nano 12 7039
[29] Wu P, Reis D, Hu X B S and Appenzeller J 2021 Nat. Electron. 4 45
[30] Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T and Miao F 2020 Nat. Electron. 3 383
[31] Wu G J, Tian B B, Liu L, et al. 2020 Nat. Electron. 3 43
[32] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H and Xu X D 2014 Nat. Nanotechnol. 9 268
[33] Liu T, Xiang D, Zheng Y, Wang Y A, Wang X Y, Wang L, He J, Liu L and Chen W 2018 Adv. Mater. 30 1804470
[34] Li D, Chen M Y, Sun Z Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotechnol. 12 901
[35] Wu G J, Zhang X M, Feng G D, Wang J L, Zhou K J, Zeng J H, Dong D N, Zhu F D, Yang C K, Zhao X M, Gong D N, Zhang M R, Tian B B, Duan C A, Liu Q, Wang J L, Chu J H and Liu M 2023 Nat. Mater. 22 1499
[36] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina- Mendoza A J and Mueller T 2020 Nature 579 62
[37] Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M and Zhu Z M 2024 ACS Nano 18 29968
[38] Gorbachev R V, Riaz I, Nair R R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K and Blake P 2011 Small 7 465
[39] del Corro E, Terrones H, Elias A, Fantini C, Feng S M, Nguyen M A, Mallouk T E, Terrones M and Pimenta M A 2014 ACS Nano 8 9629
[40] Xu J P, Luo X G, Hu S Q, Zhang X, Mei D, Liu F, Han N N, Liu D, Gan X T, Cheng Y C and Huang W 2021 Adv. Mater. 33 2008080
[41] Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691
[42] Liu C, Ma C J, Gong D W, Ma C J, Chen D X, Wu C C, Zhao M Z, Zhang Z B, Yun J M, Xiao F J, Wang E E, Liu K H and Hong H 2023 J. Phys. Chem. Lett. 14 5573
[43] Zhou S R, Fan H D, Wen S F, Zhang R, Yin Y, Lan C Y, Li C and Liu Y 2024 Adv. Opt. Mater. 12 2301982
[1] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[2] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
[3] β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings
Qiming He(何启鸣), Weibing Hao(郝伟兵), Qiuyan Li(李秋艳), Zhao Han(韩照), Song He(贺松),Qi Liu(刘琦), Xuanze Zhou(周选择), Guangwei Xu(徐光伟), and Shibing Long(龙世兵). Chin. Phys. B, 2023, 32(12): 128507.
[4] Si-Ge based vertical tunnel field-effect transistor of junction-less structure with improved sensitivity using dielectric modulation for biosensing applications
Lucky Agarwal, Varun Mishra, Ravi Prakash Dwivedi, Vishal Goyal, and Shweta Tripathi. Chin. Phys. B, 2023, 32(12): 128701.
[5] A fast-response self-powered UV-Vis-NIR broadband photodetector based on a AgIn5Se8/t-Se heterojunction
Kang Li(李康), Lei Xu(许磊), Qidong Lu(陆启东), and Peng Hu(胡鹏). Chin. Phys. B, 2023, 32(11): 118503.
[6] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[7] Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms
Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇). Chin. Phys. B, 2023, 32(5): 057305.
[8] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[9] Low switching loss and increased short-circuit capability split-gate SiC trench MOSFET with p-type pillar
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), and Fei Cao(曹菲). Chin. Phys. B, 2023, 32(5): 058501.
[10] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[11] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[12] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[13] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[14] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[15] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
No Suggested Reading articles found!