|
|
Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor |
Wentao Yu(于文韬)1, Long Zhao(赵龙)1, Yanfei Gao(高延飞)1, Shiping Gao(高石平)1, Yuekun Yang(杨悦昆)2, Chen Pan(潘晨)1,†, Shi-Jun Liang(梁世军)2,‡, and Bin Cheng(程斌)1,§ |
1 Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China; 2 Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China |
|
|
Abstract Electrically tunable homojunctions based on ambipolar two-dimensional materials have attracted widespread attention in the field of intelligent vision. These devices exhibit inherent switchable positive and negative photovoltaic properties that effectively mimic the behavior of human retinal cells. However, the photovoltaic responsivity of most electrically tunable homojunctions remains significantly low due to the weak light absorption, making it challenging to meet the application requirements for high-sensitivity target detection in the field of intelligent vision. Here, we propose a gate-tunable photodiode based on two-dimensional ambipolar WSe$_{2}$ with an asymmetric gate electrode, achieving high photovoltaic responsivity. By adjusting the gate voltage and keeping bias voltage zero, we can dynamically realize reconfigurable n$^-$-p and n$^-$-n homojunction states, as well as gate-tunable photovoltaic response characteristics that range from positive to negative. The maximum photovoltaic responsivity of the electrically tunable WSe$_{2}$ homojunction is approximately 0.4 A/W, which is significantly larger than the previously reported value $\sim 0.1 $ A/W in homojunction devices. In addition, the responsivity can be further enhanced to approximately 1.0 A/W when the n$^-$-p photodiode operates in reverse bias mode, enabling high-sensitivity detection of targets. Our work paves the way for developing gate-tunable photodiodes with high photovoltaic responsivity and advancing high-performance intelligent vision technology.
|
Received: 12 November 2024
Revised: 04 December 2024
Accepted manuscript online: 10 December 2024
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375131, 62204119, 62122036, and 62304104), the Natural Science Foundation of Jiangsu Province (Grant No. BK20220947), and the Funding of NJUST (Grant No. TSXK2022D008). |
Corresponding Authors:
Chen Pan, Shi-Jun Liang, Bin Cheng
E-mail: chenpan@njust.edu.cn;sjliang@nju.edu.cn;bincheng@njust.edu.cn
|
Cite this article:
Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌) Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor 2025 Chin. Phys. B 34 018502
|
[1] Wang S, Wang C Y, Wang P F, Wang C, Li Z A, Pan C, Dai Y T, Gao A Y, Liu C, Liu J, Yang H F, Liu X W, Cheng B, Cheng K J, Wang Z L,Watanabe K, Taniguchi T, Liang S J and Miao F 2021 Natl. Sci. Rev. 8 nwaa172 [2] Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S and Ye L 2024 Nat. Commun. 15 8650 [3] Zhang Z, Wang S, Liu C, Xie R, Hu W and Zhou P 2021 Nat. Nanotechnol. 17 27 [4] Shang H, Hu Y, Gao F, Dai M, Zhang S, Wang S, Ouyang D, Li X, Song X, Gao B, Zhai T and Hu P 2022 ACS Nano 16 21293 [5] Pan X, Shi J W, Wang P F, Wang S, Pan C, Yu W T, Cheng B, Liang S J and Miao F 2023 Sci. Adv. 9 eadi4083 [6] Yang Y, Pan C, Li Y, Yangdong X,Wang P, Li Z A,Wang S, YuW, Liu G, Cheng B, Di Z, Liang S J and Miao F 2024 Nat. Electron. 7 225 [7] Dang Z Y, Guo F, Wang Z Q, Jie W J, Jin K, Chai Y and Hao J H 2024 ACS Nano 18 27727 [8] Cai Y C, Wang F, Wang X M, Li S H, Wang Y R, Yang J, Yan T, Zhan X Y, Wang F M, Cheng R Q, He J and Wang Z X 2023 Adv. Funct. Mater. 33 2212917 [9] Zeng S, Liu C, Huang X, Tang Z, Liu L and Zhou P 2022 Nat. Commun. 13 56 [10] Feng G, Zhang X, Tian B and Duan C 2023 InfoMat 5 e12473 [11] Yang Y, Zhao J, Liu Y, Hua X, Wang T, Zheng J, Hao Z, Xiong B, Sun C, Han Y, Wang J, Li H, Wang L and Luo Y 2024 Chin. Phys. B 33 030702 [12] Wang H, Song X, Li Z, Li D, Xu X, Chen Y, Liu P, Zhou X and Zhai T 2024 J. Semicond. 45 051701 [13] Wang C Y, Liang S J, Wang S, et al. 2020 Sci. Adv. 6 eaba6173 [14] Liao F, Zhou Z, Kim B J, Chen J, Wang J, Wan T, Zhou Y, Hoang A T, Wang C, Kang J, Ahn J H and Chai Y 2022 Nat. Electron. 5 84 [15] Zhou Y, Fu J W, Chen Z R, Zhuge F W, Wang Y S, Yan J M, Ma S J, Xu L, Yuan H M, Chan M S, Miao X S, He Y H and Chai Y 2023 Nat. Electron. 6 870 [16] Jin H, Park C, Byun H H, Park S H and Choi S Y 2023 ACS Photonics 10 3027 [17] Masanta S, Nayak C, Agarwal P, Das K and Singha A 2023 ACS Appl. Mater. Interfaces 15 14523 [18] Liu F, Lin X, Yan Y T, Gan X T, Cheng Y C and Luo X G 2023 Nano Lett. 23 11645 [19] Yang Y K, Wang X D, Wang C, Song Y X, Zhang M, Xue Z Y, Wang S M, Zhu Z Y S, Liu G Y, Li P L, Dong L X, Mei Y F, Chu W D, Hu J L, Wang and Di Z F 2020 Nano Lett. 20 3872 [20] Mak K F and Shan J 2016 Nat. Photon. 10 216 [21] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett 105 136805 [22] Xie C, Mak C, Tao XMand Yan F 2017 Adv. Funct. Mater. 27 1603886 [23] Jariwala D, Davoyan A R,Wong J and Atwater H A 2017 ACS Photonics 4 2962 [24] Wei X, Yan F G, Lv Q S, Shen C and Wang K Y 2017 Nanoscale 9 8388 [25] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262 [26] Pospischil A, FurchiMMand Mueller T 2014 Nat. Nanotechnol. 9 257 [27] Zhao Y, Sun H, Sheng Z, Zhang W, Zhou P and Zhang Z 2023 Chin. Phys. B 32 128505 [28] Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E and De Micheli G 2018 ACS Nano 12 7039 [29] Wu P, Reis D, Hu X B S and Appenzeller J 2021 Nat. Electron. 4 45 [30] Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T and Miao F 2020 Nat. Electron. 3 383 [31] Wu G J, Tian B B, Liu L, et al. 2020 Nat. Electron. 3 43 [32] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H and Xu X D 2014 Nat. Nanotechnol. 9 268 [33] Liu T, Xiang D, Zheng Y, Wang Y A, Wang X Y, Wang L, He J, Liu L and Chen W 2018 Adv. Mater. 30 1804470 [34] Li D, Chen M Y, Sun Z Z, Yu P, Liu Z, Ajayan P M and Zhang Z X 2017 Nat. Nanotechnol. 12 901 [35] Wu G J, Zhang X M, Feng G D, Wang J L, Zhou K J, Zeng J H, Dong D N, Zhu F D, Yang C K, Zhao X M, Gong D N, Zhang M R, Tian B B, Duan C A, Liu Q, Wang J L, Chu J H and Liu M 2023 Nat. Mater. 22 1499 [36] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina- Mendoza A J and Mueller T 2020 Nature 579 62 [37] Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M and Zhu Z M 2024 ACS Nano 18 29968 [38] Gorbachev R V, Riaz I, Nair R R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K and Blake P 2011 Small 7 465 [39] del Corro E, Terrones H, Elias A, Fantini C, Feng S M, Nguyen M A, Mallouk T E, Terrones M and Pimenta M A 2014 ACS Nano 8 9629 [40] Xu J P, Luo X G, Hu S Q, Zhang X, Mei D, Liu F, Han N N, Liu D, Gan X T, Cheng Y C and Huang W 2021 Adv. Mater. 33 2008080 [41] Buscema M, Island J O, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2015 Chem. Soc. Rev. 44 3691 [42] Liu C, Ma C J, Gong D W, Ma C J, Chen D X, Wu C C, Zhao M Z, Zhang Z B, Yun J M, Xiao F J, Wang E E, Liu K H and Hong H 2023 J. Phys. Chem. Lett. 14 5573 [43] Zhou S R, Fan H D, Wen S F, Zhang R, Yin Y, Lan C Y, Li C and Liu Y 2024 Adv. Opt. Mater. 12 2301982 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|