Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117501    DOI: 10.1088/1674-1056/ad7577
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum

Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔)†
College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We theoretically studied the dynamic properties of the skyrmion driven by electromagnetic (EM) waves with spin angular momentum (SAM) and orbital angular momentum (OAM) using micromagnetic simulations. First, the guiding centers of the skyrmion driven by EM waves with SAM, i.e., left-handed and right-handed circularly polarized EM waves, present circular trajectories, while present elliptical trajectories under linear EM waves driving due to the superposition of oppositely polarized wave components. Second, the trajectories of the skyrmion driven by EM waves with OAM demonstrate similar behavior to that driven by linearly polarized EM waves. Because the wave vector intensity varies with the phase for both linearly polarized EM waves and EM waves with OAM, the angular momentum is transferred to the skyrmion non-uniformly, while the angular momentum is transferred to the skyrmion uniformly for left-handed and right-handed circularly polarized EM driving. Third, the dynamic properties of the skyrmion driven by EM waves with both SAM and OAM are investigated. It is found that the dynamic trajectories exhibit more complex behavior due to the contributions or competition of SAM and OAM. We investigate the characteristics of intrinsic gyration modes and frequency-dependent trajectories. Our research may provide insight into the dynamic properties of skyrmion manipulated by EM waves with SAM or OAM and provide a method for controlling skyrmion in spintronic devices.
Keywords:  skyrmion      spin angular momentum      orbital angular momentum      dynamic properties  
Received:  04 June 2024      Revised:  05 August 2024      Accepted manuscript online:  30 August 2024
PACS:  75.30.Ds (Spin waves)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  85.70.Ay (Magnetic device characterization, design, and modeling)  
  12.39.Dc (Skyrmions)  
Corresponding Authors:  Zhikuo Tao     E-mail:  zktao@njupt.edu.cn

Cite this article: 

Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔) Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum 2024 Chin. Phys. B 33 117501

[1] Skyrme T H R 1962 Nucl. Phy. 31 556
[2] Skyrme T H R 1961 Proc. R. Soc. London Ser. A 262 237
[3] Skyrme T H R 1961 Proc. R. Soc. London Ser. A 260 127
[4] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[5] Göbel B, Mertig I and Tretiakov O A 2021 Phys. Rep. 895 1
[6] Marrows C and Zeissler K 2021 Appl. Phys. Lett. 119 250520
[7] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[8] Moriya T 1960 Phys. Rev. Lett. 4 228
[9] Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B and Schmidt M 2010 Phys. Rev. B 81 041203
[10] Shibata K, Yu X, Hara T, Morikawa D, Kanazawa N, Kimoto K, Ishiwata S, Matsui Y and Tokura Y 2013 Nat. Nanotechnol. 8 723
[11] Yu X, Kanazawa N, Onose Y, Kimoto K, Zhang W, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[12] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M and Weigand M 2016 Nat. Mater. 15 501
[13] Henderson M, Bleuel M, Beare J, Cory D, Heacock B, Huber M, Luke G, Pula M, Sarenac D and Sharma S 2022 Phys. Rev. B 106 094435
[14] Birch M, Moody S, Wilson M, Crisanti M, Bewley O, Štefančič A, Balakrishnan G, Fan R, Steadman P and Venero D A 2020 Phys. Rev. B 102 104424
[15] Bak P and Jensen M H 1980 J. Phys. C: Solid State Phys. 13 L881
[16] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[17] Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M and Finocchio G 2014 Sci. Rep. 4 6784
[18] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[19] Mochizuki M, Yu X, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y and Nagaosa N 2014 Nat. Mater. 13 241
[20] Kong L and Zang J 2013 Phys. Rev. Lett. 111 067203
[21] Everschor K, Garst M, Binz B, Jonietz F, Mühlbauer S, Pfleiderer C and Rosch A 2012 Phys. Rev. B 86 054432
[22] Moon K W, Kim D K, Je S G, Chun B S, Kim W, Qiu Z, Choe S B and Hwang C 2016 Sci. Rep. 6 20360
[23] Kim J V, Garcia-Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V and Fert A 2014 Phys. Rev. B 90 064410
[24] McKeever B, Rodrigues D, Pinna D, Abanov A, Sinova J and Everschor-Sitte K 2019 Phys. Rev. B 99 054430
[25] Garanin D A, Jaafar R and Chudnovsky E M 2020 Phys. Rev. B 101 014418
[26] Wang W, Beg M, Zhang B, Kuch W and Fangohr H 2015 Phys. Rev. B 92 020403
[27] Jin C D, Song C K, Wang J S, Xia H Y, Wang J B and Liu Q F 2017 J. Appl. Phys. 122 223901
[28] Mochizuki M 2012 Phys. Rev. Lett. 108 017601
[29] Vigo-Cotrina H and Guimarães A 2020 J. Magn. Magn. Mater. 507 166848
[30] Mehmood N, Wang J, Zhang C, Zeng Z, Wang J and Liu Q 2022 J. Magn. Magn. Mater. 545 168775
[31] Shen X, Zhao R, Ji L, Hu C, Ren W, Chen W, Li Y, Zhang J, Zhang X and Dong X 2022 J. Magn. Magn. Mater. 541 168521
[32] Liu Y, Liu T, Jin Z, Hou Z, Chen D, Fan Z, Zeng M, Lu X, Gao X and Qin M 2022 Phys. Rev. B 106 064424
[33] Yang W, Yang H, Cao Y and Yan P 2018 Opt. Express 26 8778
[34] Li H, Rodriguez-Fajardo V, Chen P and Forbes A 2020 Phys. Rev. A 102 063533
[35] Guan S H, Liu Y, Hou Z P, Chen D Y, Fan Z, Zeng M, X. Lu X B, Gao X S, Qin M H and Liu J M 2023 Phys. Rev. B 107 214429
[36] Beg M, Lang M and Fangohr H 2022 IEEE Trans. Magn. 58 7300205
[37] Gilbert T L 2004 IEEE Trans. Mag. 40 3443
[38] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425
[39] Dai Y Y, Wang H, Tao P, Yang T, Ren W J and Zhang Z D 2013 Phys. Rev. B 88 054403
[40] Wang W W, Beg M, Zhang B, Kuch W and Fangohr H 2015 Phys. Rev. B 92 020403
[41] Yu D X, Sui C W, Schulz D, Berakdar J and Jia C L 2021 Phys. Rev. Appl. 16 034032
[42] Makhfudz I, Krüger B and Tchernyshyov O 2012 Phys. Rev. Lett. 109 217201
[43] Moon K W, Chun B S, Kim W, Qiu Z Q and Hwang C 2014 Phys. Rev. B 89 064413
[1] Frequency combs based on magnon-skyrmion interaction in magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhejunyu Jin(金哲珺雨), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(8): 087503.
[2] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[3] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[4] Creation and annihilation of artificial magnetic skyrmions with the electric field
Jun Cheng(程军), Liang Sun(孙亮), Yike Zhang(张一可), Tongzhou Ji(吉同舟), Rongxing Cao(曹荣幸), Bingfeng Miao(缪冰锋), Yonggang Zhao(赵永刚), and Haifeng Ding(丁海峰). Chin. Phys. B, 2024, 33(3): 037501.
[5] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[6] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[7] Skyrmion motion induced by spin-waves on magnetic nanotubes
Tijjani Abdulrazak, Xuejuan Liu(刘雪娟), Zhenyu Wang(王振宇), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2024, 33(10): 107504.
[8] Polarity-controllable magnetic skyrmion filter
Xiao-Lin Ai(艾啸林), Hui-Ting Li(李慧婷), Xue-Feng Zhang(张雪枫), Chang-Feng Li(李昌锋), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2024, 33(10): 107502.
[9] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[10] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[11] Dynamics of bubble-shaped Bose-Einstein condensates on two-dimensional cross-section in micro-gravity environment
Tie-Fu Zhang(张铁夫), Cheng-Xi Li(李成蹊), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(9): 090501.
[12] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[13] Gate-voltage control of alternating-current-driven skyrmion propagation in ferromagnetic nanotrack devices
Xin-Yi Cai(蔡心怡), Zhi-Hua Chen(陈志华), Hang-Xiao Yang(杨航霄), Xin-Yan He(何鑫岩), Zhen-Zhen Chen(陈珍珍), Ming-Min Zhu(朱明敏), Yang Qiu(邱阳), Guo-Liang Yu(郁国良), and Hao-Miao Zhou(周浩淼). Chin. Phys. B, 2023, 32(6): 067502.
[14] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[15] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
No Suggested Reading articles found!