Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117401    DOI: 10.1088/1674-1056/ad78d9
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Pseudospin-filter tunneling of massless Dirac fermions

Zhengdong Li(李政栋) and Wen Zeng(曾文)†
Department of Physics, Jiangsu University, Zhenjiang 212013, China
Abstract  The tunneling of the massless Dirac fermions through a vector potential barrier are theoretically investigated, where the vector potential can be introduced by very high and very thin ($\delta$-function) magnetic potential barriers. We show that, distinct from the previously studied electric barrier tunneling, the vector potential barriers are more transparent for pseudospin-1/2 Dirac fermions but more obstructive for pseudospin-1 Dirac fermions. By tuning the height of the vector potential barrier, the pseudospin-1/2 Dirac fermions remain transmitted, whereas the transmission of the pseudospin-$1$ Dirac fermions is forbidden, leading to a pseudospin filtering effect for massless Dirac fermions.
Keywords:  tunneling junction      pseudospin filter      magnetic barrier  
Received:  09 July 2024      Revised:  17 August 2024      Accepted manuscript online:  10 September 2024
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  73.43.Jn (Tunneling)  
Fund: Project supported by the College Student Innovation Project (Grant No. 202310299517X) and the Scientific Research Project of Jiangsu University (Grant No. 22A716).
Corresponding Authors:  Wen Zeng     E-mail:  zeng@ujs.edu.cn

Cite this article: 

Zhengdong Li(李政栋) and Wen Zeng(曾文) Pseudospin-filter tunneling of massless Dirac fermions 2024 Chin. Phys. B 33 117401

[1] Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802
[2] Jiao M Q and Li Y X 2024 Phys. Lett. A 497 129343
[3] Xu Y F, Fang Y and Jin G J 2023 New J. Phys. 25 013020
[4] Zhao J J, Liu G B, Chen P, Yao Y G, Zhang G Y and Du L J 2024 Chin. Phys. Lett. 41 066801
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[6] Beeler M C, Williams R A, Jiménez-García K, LeBlanc L J, Perry A R and Spielman I B 2013 Nature 498 201
[7] Wang J J, Liu S, Wang J and Liu J F 2020 Phys. Rev. B 102 235414
[8] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[9] Li Y Q, Chen X R, Luo W, Zhou T and Chen W 2022 Europhys. Lett. 137 36003
[10] Varlet A, Liu M H, Krueckl V, Bischoff D, Simonet P, Watanabe K, Taniguchi T, Richter K, Ensslin K and Ihn T 2014 Phys. Rev. Lett. 113 116601
[11] Mukherjee1 D K, Rao1 S and Das S 2019 J. Phys.: Condens. Matter 31 045302
[12] Wang J J and Wang J 2024 Chin. Phys. B 33 017801
[13] Martinez J C, Jalil M B A and Tan S G 2009 Appl. Phys. Lett. 95 102108
[14] Fang A, Zhang Z Q, Louie S G and Chan C T 2016 Phys. Rev. B 93 035422
[15] Shen R, Shao L B, Wang B G and Xing D Y 2010 Phys. Rev. B 81 041410
[16] Xu Y F and Jin G J 2014 Phys. Lett. A 378 3554
[17] Raoux A, Morigi M, Fuchs J N, Piéchon F and Montambaux G 2014 Phys. Rev. Lett. 112 026402
[18] Singh A and Sharma G 2023 Phys. Rev. B 107 245150
[19] Illes E and Nicol E J 2017 Phys. Rev. B 95 235432
[20] Cunha S M, da Costa D R, Milton Pereira J Jr, Costa Filho R N, Van Duppen B and Peeters F M 2021 Phys. Rev. B 104 115409
[21] Cunha S M, da Costa D R, Milton Pereira J Jr, Costa Filho R N, Van Duppen B and Peeters F M 2022 Phys. Rev. B 105 165402
[22] Korol A M, Sokolenko A I and Shevchenko O 2021 Low Temp. Phys. 47 300
[23] Sukhachov P O, Oriekhov D O and Gorbar E V 2023 Phys. Rev. B 108 075166
[24] Betancur-Ocampo Y, Cordourier-Maruri G, Gupta V and de Coss R 2017 Phys. Rev. B 96 024304
[25] Zeng W and Shen R 2022 New J. Phys. 24 043021
[26] Feng X L, Liu Y, Yu Z M, Ma Z S, Ang L K, Ang Y S and Yang S Y A 2020 Phys. Rev. B 101 235417
[27] Duan W Y 2023 Phys. Rev. B 108 155428
[28] Yang C H, Wieser R and Wang L 2020 J. Appl. Phys. 128 094301
[29] Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444
[30] Fang A, Zhang Z Q, Louie S G and Chan C T 2019 Research 2019 3054062
[31] Fan C Z, Wang J Q, He J N, Ding P and Liang E J 2013 Chin. Phys. B 22 074211
[32] Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302
[33] Deng W Y, Zhu R, Xiao Y C and Deng W J 2014 Chin. Phys. B 23 017202
[34] Martino A D, Dell’Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[35] Hu X W and Cheng F 2019 Sci. Rep. 9 10947
[36] Yesilyurt C, Tan S G, Liang G and Jalil M B A 2016 Sci. Rep. 6 38862
[37] Mandal I and Sen A 2021 Phys. Lett. A 399 127293
[38] Masir M R, Vasilopoulos P and Peeters F M 2009 New J. Phys. 11 095009
[39] Zalipaev V, Linton C M, Croitoru M D and Vagov A 2015 Phys. Rev. B 91 085405
[40] Allain P E and Fuchs J N 2011 Eur. Phys. J. B 83 301
[41] Zhu R 2024 Physica B 687 416091
[42] Datta S 1992 Phys. Rev. B 45 1347
[43] Cornean H D, Jensen A and Moldoveanu V 2005 J. Math. Phys. 46 042106
[44] Pastawski H M 1991 Phys. Rev. B 44 6329
[45] Contreras-Astorga A, Correa F and Jakubský V 2020 Phys. Rev. B 102 115429
[46] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[1] Anomalous spin Josephson effect in spin superconductors
Wen Zeng(曾文) and Rui Shen(沈瑞). Chin. Phys. B, 2024, 33(3): 037401.
[2] Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink
Min-Hui Ji(冀敏慧), Xin-Miao Zhang(张欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法), Yue-Guo Hu(胡悦国), Jia-Fei Hu(胡佳飞), Wei-Cheng Qiu(邱伟成), Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森). Chin. Phys. B, 2023, 32(7): 078506.
[3] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[4] Cryogenic amplifier with low input-referred voltage noise calibrated by shot noise measurement
Wuhao Yang(杨伍昊), Jian Wei(危健). Chin. Phys. B, 2018, 27(6): 060702.
[5] Total ionizing radiation-induced read bit-errors in toggle magnetoresistive random-access memory devices
Yan Cui(崔岩), Ling Yang(杨玲), Teng Gao(高腾), Bo Li(李博), Jia-Jun Luo(罗家俊). Chin. Phys. B, 2017, 26(8): 087501.
[6] Ferromagnetic barrier-induced negative differential conductance on the surface of a topological insulator
An Xing-Tao (安兴涛). Chin. Phys. B, 2014, 23(10): 107301.
[7] Wave-vector filtering effect of electric–magnetic barrier in HgTe quantum wells
Zou Yong-Lian (邹永连), Song Jun-Tao (宋俊涛). Chin. Phys. B, 2013, 22(3): 037304.
[8] Spin-dependent transport for a two-dimensional electron gas with magnetic barriers
Wang Hai-Yan(王海艳), Duan Zi-Gang(段子刚), Liao Wen-Hu(廖文虎), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2010, 19(3): 037301.
[9] Analytical solution of the Boltzmann--Poisson equation and its application to MIS tunneling junctions
Zhang Li-Zhi(张礼智) and Wang Zheng-Chuan(王正川). Chin. Phys. B, 2009, 18(7): 2975-2980.
No Suggested Reading articles found!