Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117502    DOI: 10.1088/1674-1056/ad6de7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric properties of Nd-doped Gd5Si4 microparticles and nanopowders

Kaiyang Zhang(张凯扬), Huanhuan Wang(王欢欢), Ying Wang(王颖)†, and Tao Wang(王涛)‡
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  The preparation of materials with enhanced magnetocaloric properties is crucial for magnetic refrigeration. In this study, Nd-doped Gd$_{5}$Si$_{4}$ microparticles and nanomaterials were synthesized using the reduction-diffusion method. The impact of Nd doping with varying compositions on the structure and entropy change properties of the materials was investigated. The Curie temperatures of both the micron- and nano-sized materials ranged from 190 K to 210 K, which were lower than previously reported values. Micron-sized samples doped with 1% Nd exhibited superior magnetocaloric properties, demonstrating a maximum entropy change of 4.98 J$\cdot $kg$^{-1}\cdot $K$^{-1}$ at 5 T, with an entropy change exceeding 4 J$\cdot $kg$^{-1}\cdot $K$^{-1}$ over a wide temperature range of approximately 70 K. Conversely, the nanomaterials had broader entropy change peaks but lower values. All samples exhibited a second-order phase transition, as confirmed by the Arrott plots.
Keywords:  magnetocaloric      Gd$_{5}$Si$_{4}$      Nd doping      reduction-diffusion method  
Received:  09 May 2024      Revised:  09 August 2024      Accepted manuscript online:  12 August 2024
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Project supported by the Natural Science Foundation of Gansu Province (Grant No. 22JR5RA404).
Corresponding Authors:  Ying Wang, Tao Wang     E-mail:  yingw@lzu.edu.cn;wtao@lzu.edu.cn

Cite this article: 

Kaiyang Zhang(张凯扬), Huanhuan Wang(王欢欢), Ying Wang(王颖), and Tao Wang(王涛) Magnetocaloric properties of Nd-doped Gd5Si4 microparticles and nanopowders 2024 Chin. Phys. B 33 117502

[1] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Res. 30 387
[3] Pecharsky V K and Gschneidner K A 1999 J. Magn. Magn. Mater. 200 44
[4] Hao J Z, Hu F X, Yu Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Li J, Zhang C, Liang W H, Wang J, He J, Sun J R and Shen B G 2020 Chin. Phys. B 29 047504
[5] Brown G V 1976 J. Appl. Phys. 47 3673
[6] Franco V, Blázquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305
[7] Oesterreicher H and Parker F T 1984 J. Appl. Phys. 55 4334
[8] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[9] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[10] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305
[11] Banerjee B K 1964 Phys. Lett. 12 16
[12] Dan’kov S Y, Tishin A M, Pecharsky V K and Gschneidner K A 1998 Phys. Rev. B 57 3478
[13] Holtzberg F, Gambino R J and McGuire T R 1967 J. Phys. Chem. Solids 28 2283
[14] Pecharsky V K and Gschneidner Jr. K A 2001 Adv. Mater. 13 683
[15] Hu P Q, Zhang Z M, Zhang F X, Guan W Z, Wang D H and Du Y W 2022 Curr. Appl. Phys. 34 95
[16] Morellon L, Algarabel P A, Ibarra M R, Blasco J, García-Landa B, Arnold Z and Albertini F 1998 Phys. Rev. B 58 R14721
[17] Pecharsky V K and Gschneidner K A 1997 J. Alloys Compd. 260 98
[18] Harstad S M, El-Gendy A A, Gupta S, Pecharsky V K and Hadimani R L 2019 JOM 71 3159
[19] Pecharsky V K and Gschneidner Jr. K A 1997 Phys. Rev. Lett. 78 4494
[20] Choe W, Pecharsky V K, Pecharsky A O, Gschneidner K A, Young V G and Miller G J 2000 Phys. Rev. Lett. 84 4617
[21] Pecharsky A O, Gschneidner K A and Pecharsky V K 2003 J. Appl. Phys. 93 4722
[22] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B 29 056401
[23] Levin E M, Pecharsky V K and Gschneidner K A 1999 Phys. Rev. B 60 7993
[24] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[25] Uthaman B and Raama Varma M 2015 Mater. Sci. Forum 830-831 501
[26] Kou R H, Gao J, Ren Y, Sanyal B, Bhandary S, Heald S M, Fisher B and Sun C J 2018 AIP Adv. 8 125219
[27] Nikitin S, Smirnov A, Bogdanov A and Ovchenkova I 2018 EPJ Web of Conferences 185 05006
[28] Pavan Kumar N, Prabahar K, Raj Kumar D M and Manivel Raja M 2019 J. Supercond. Novel Magn. 32 319
[29] Zhang T B, Chen Y G, Tang Y B, Du H J, Ren T and Tu M J 2007 J. Alloys Compd. 433 18
[30] Paixão L S, Rangel G, Usuda E O, Imamura W, Tedesco J C G, Patiño J C, Gomes A M, Alves C S and Carvalho A M G 2020 J. Magn. Magn. Mater. 493 165693
[31] Nauman M, Alnasir M H, Hamayun M A, Wang Y X, Shatruk M and Manzoor S 2020 RSC Adv. 10 28383
[32] Canepa F, Cirafici S and Napoletano M 2002 J. Alloys Compd. 335 L1
[33] Tung L D, Lees M R, Balakrishnan G and Paul D M 2005 Phys. Rev. B 71 144410
[34] Altounian Z and Liu X B 2007 J. Appl. Phys. 101 09
[35] Landers J, Salamon S, Keune W, Gruner M E, Krautz M, Zhao J, Hu M Y, Toellner T S, Alp E E, Gutfleisch O and Wende H 2018 Phys. Rev. B 98 024417
[36] Arrott A and Noakes J E 1967 Phys. Rev. Lett. 19 786
[37] Aharoni A 1986 J. Magn. Magn. Mater. 58 297
[38] Duc N H, Kim Anh D T and Brommer P E 2002 Physica B 319 1
[1] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[2] Rational design and synthesis of Cr1-xTe/Ag2Te composites for solid-state thermoelectromagnetic cooling near room temperature
Xiaochen Sun(孙笑晨), Chenghao Xie(谢承昊), Sihan Chen(陈思汗), Jingwei Wan(万京伟), Gangjian Tan(谭刚健), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2024, 33(5): 057201.
[3] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[4] Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials
Changji Xu(徐长吉), Xinyu Jiang(姜心雨), Zhengguang Zou(邹正光), Zhuojia Xie(谢卓家), Weijian Zhang(张伟建), and Min Feng(冯敏). Chin. Phys. B, 2024, 33(12): 127501.
[5] Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy
Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(8): 084202.
[6] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[7] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[8] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[9] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[10] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[11] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[12] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[13] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[14] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[15] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
No Suggested Reading articles found!