CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
|
|
|
Magnetocaloric properties of Nd-doped Gd5Si4 microparticles and nanopowders |
Kaiyang Zhang(张凯扬), Huanhuan Wang(王欢欢), Ying Wang(王颖)†, and Tao Wang(王涛)‡ |
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The preparation of materials with enhanced magnetocaloric properties is crucial for magnetic refrigeration. In this study, Nd-doped Gd$_{5}$Si$_{4}$ microparticles and nanomaterials were synthesized using the reduction-diffusion method. The impact of Nd doping with varying compositions on the structure and entropy change properties of the materials was investigated. The Curie temperatures of both the micron- and nano-sized materials ranged from 190 K to 210 K, which were lower than previously reported values. Micron-sized samples doped with 1% Nd exhibited superior magnetocaloric properties, demonstrating a maximum entropy change of 4.98 J$\cdot $kg$^{-1}\cdot $K$^{-1}$ at 5 T, with an entropy change exceeding 4 J$\cdot $kg$^{-1}\cdot $K$^{-1}$ over a wide temperature range of approximately 70 K. Conversely, the nanomaterials had broader entropy change peaks but lower values. All samples exhibited a second-order phase transition, as confirmed by the Arrott plots.
|
Received: 09 May 2024
Revised: 09 August 2024
Accepted manuscript online: 12 August 2024
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
Fund: Project supported by the Natural Science Foundation of Gansu Province (Grant No. 22JR5RA404). |
Corresponding Authors:
Ying Wang, Tao Wang
E-mail: yingw@lzu.edu.cn;wtao@lzu.edu.cn
|
Cite this article:
Kaiyang Zhang(张凯扬), Huanhuan Wang(王欢欢), Ying Wang(王颖), and Tao Wang(王涛) Magnetocaloric properties of Nd-doped Gd5Si4 microparticles and nanopowders 2024 Chin. Phys. B 33 117502
|
[1] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479 [2] Gschneidner K A and Pecharsky V K 2000 Annu. Rev. Mater. Res. 30 387 [3] Pecharsky V K and Gschneidner K A 1999 J. Magn. Magn. Mater. 200 44 [4] Hao J Z, Hu F X, Yu Z B, Shen F R, Zhou H B, Gao Y H, Qiao K M, Li J, Zhang C, Liang W H, Wang J, He J, Sun J R and Shen B G 2020 Chin. Phys. B 29 047504 [5] Brown G V 1976 J. Appl. Phys. 47 3673 [6] Franco V, Blázquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305 [7] Oesterreicher H and Parker F T 1984 J. Appl. Phys. 55 4334 [8] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545 [9] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150 [10] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305 [11] Banerjee B K 1964 Phys. Lett. 12 16 [12] Dan’kov S Y, Tishin A M, Pecharsky V K and Gschneidner K A 1998 Phys. Rev. B 57 3478 [13] Holtzberg F, Gambino R J and McGuire T R 1967 J. Phys. Chem. Solids 28 2283 [14] Pecharsky V K and Gschneidner Jr. K A 2001 Adv. Mater. 13 683 [15] Hu P Q, Zhang Z M, Zhang F X, Guan W Z, Wang D H and Du Y W 2022 Curr. Appl. Phys. 34 95 [16] Morellon L, Algarabel P A, Ibarra M R, Blasco J, García-Landa B, Arnold Z and Albertini F 1998 Phys. Rev. B 58 R14721 [17] Pecharsky V K and Gschneidner K A 1997 J. Alloys Compd. 260 98 [18] Harstad S M, El-Gendy A A, Gupta S, Pecharsky V K and Hadimani R L 2019 JOM 71 3159 [19] Pecharsky V K and Gschneidner Jr. K A 1997 Phys. Rev. Lett. 78 4494 [20] Choe W, Pecharsky V K, Pecharsky A O, Gschneidner K A, Young V G and Miller G J 2000 Phys. Rev. Lett. 84 4617 [21] Pecharsky A O, Gschneidner K A and Pecharsky V K 2003 J. Appl. Phys. 93 4722 [22] Tang B Z, Liu X P, Li D M, Yu P and Xia L 2020 Chin. Phys. B 29 056401 [23] Levin E M, Pecharsky V K and Gschneidner K A 1999 Phys. Rev. B 60 7993 [24] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853 [25] Uthaman B and Raama Varma M 2015 Mater. Sci. Forum 830-831 501 [26] Kou R H, Gao J, Ren Y, Sanyal B, Bhandary S, Heald S M, Fisher B and Sun C J 2018 AIP Adv. 8 125219 [27] Nikitin S, Smirnov A, Bogdanov A and Ovchenkova I 2018 EPJ Web of Conferences 185 05006 [28] Pavan Kumar N, Prabahar K, Raj Kumar D M and Manivel Raja M 2019 J. Supercond. Novel Magn. 32 319 [29] Zhang T B, Chen Y G, Tang Y B, Du H J, Ren T and Tu M J 2007 J. Alloys Compd. 433 18 [30] Paixão L S, Rangel G, Usuda E O, Imamura W, Tedesco J C G, Patiño J C, Gomes A M, Alves C S and Carvalho A M G 2020 J. Magn. Magn. Mater. 493 165693 [31] Nauman M, Alnasir M H, Hamayun M A, Wang Y X, Shatruk M and Manzoor S 2020 RSC Adv. 10 28383 [32] Canepa F, Cirafici S and Napoletano M 2002 J. Alloys Compd. 335 L1 [33] Tung L D, Lees M R, Balakrishnan G and Paul D M 2005 Phys. Rev. B 71 144410 [34] Altounian Z and Liu X B 2007 J. Appl. Phys. 101 09 [35] Landers J, Salamon S, Keune W, Gruner M E, Krautz M, Zhao J, Hu M Y, Toellner T S, Alp E E, Gutfleisch O and Wende H 2018 Phys. Rev. B 98 024417 [36] Arrott A and Noakes J E 1967 Phys. Rev. Lett. 19 786 [37] Aharoni A 1986 J. Magn. Magn. Mater. 58 297 [38] Duc N H, Kim Anh D T and Brommer P E 2002 Physica B 319 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|