Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116402    DOI: 10.1088/1674-1056/ad7725
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

“Glass-quake” in elastically loaded bulk metallic glasses

Qi Huang(黄琦)1, Kaiguo Chen(陈开果)2,†, Chen Liu(刘辰)3,‡, Guisen Liu(刘桂森)1,§, Yang Shao(邵洋)4, Chenlong Zhao(赵晨龙)1, Ran Chen(陈然)1, Hengtong Bu(卜亨通)4, Lingti Kong(孔令体)1,5, and Yao Shen(沈耀)1,¶
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 College of Science, National University of Defense Technology, Changsha 410073, China;
3 Independent Researcher, Paris, France;
4 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
5 Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Amorphous solids exhibit scale-free avalanches, even under small external loading, and thus can work as suitable systems to study critical behavior and universality classes. The abundance of scale-free avalanches in the entire elastic tension regime of bulk metallic glass (BMG) samples has been experimentally observed using acoustic emission (AE) measurements. In this work, we compare the statistics of avalanches with those of earthquakes, and find that they both follow the Gutenberg-Richter law in the statistics of energies and Omori's law of aftershock rates, and share the same characteristics in the distribution of recurrence times. These resemblances encourage us to propose the term "glass-quake" to describe avalanches in elastically loaded BMGs. Furthermore, our work echoes the potential universality of critical behavior in disordered physical systems from atomic to planetary scales, and motivates the use of elastic loaded BMGs as valuable laboratory simulators of seismic dynamics.
Keywords:  bulk metallic glass      avalanche      earthquake      disorder system      time series  
Received:  25 April 2024      Revised:  11 July 2024      Accepted manuscript online:  04 September 2024
PACS:  64.60.av (Cracks, sandpiles, avalanches, and earthquakes)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  91.30.Px (Earthquakes)  
  61.43.-j (Disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51801122 and 52071210), the Science Challenge Project (Grant No. TZ2018001), and the Science and Technology Commission of Shanghai (Grant No. 21ZR1430800).
Corresponding Authors:  Kaiguo Chen, Chen Liu, Guisen Liu, Yao Shen     E-mail:  chenkaiguo@nudt.edu.cn;chen.liu.428@hotmail.com;liuguisen@sjtu.edu.cn;yaoshen@sjtu.edu.cn

Cite this article: 

Qi Huang(黄琦), Kaiguo Chen(陈开果), Chen Liu(刘辰), Guisen Liu(刘桂森), Yang Shao(邵洋), Chenlong Zhao(赵晨龙), Ran Chen(陈然), Hengtong Bu(卜亨通), Lingti Kong(孔令体), and Yao Shen(沈耀) “Glass-quake” in elastically loaded bulk metallic glasses 2024 Chin. Phys. B 33 116402

[1] Berthier L, Biroli G, Bouchaud J P, Cipelletti L and van Saarloos W 2011 Dynamical heterogeneities in glasses, colloids, and granular media Vol. 150 (OUP Oxford)
[2] Inoue A, Kong F, Zhu S and Greer A 2019 MRS Bulletin 44 867
[3] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[4] Sun Y, Concustell A and Greer A L 2016 Nature Reviews Materials 1 16039
[5] Finney J 1970 Proc. Roy. Soc. London. A Math. Phys. Sci. 319 479
[6] Sheng H, Luo W, Alamgir F, Bai J and Ma E 2006 Nature 439 419
[7] Yang Y, Zhou J, Zhu F, et al. 2021 Nature 592 60
[8] Charbonneau P, Kurchan J, Parisi G, Urbani P and Zamponi F 2017 Annual Review of Condensed Matter Physics 8 265
[9] Bonn D, Denn M M, Berthier L, Divoux T and Manneville S 2017 Rev. Mod. Phys. 89 035005
[10] Huang Q, Chen K, liu C, Liu G, Shao Y, Zhao C, Chen R, Bu H, Kong L and Shen Y, to be published
[11] Uhl J T, Pathak S, Schorlemmer D, Liu X, Swindeman R, Brinkman B A W, LeBlanc M, Tsekenis G, Friedman N, Behringer R, Denisov D, Schall P, Gu X, Wright W J, Hufnagel T, Jennings A, Greer J R, Liaw P K, Becker T, Dresen G and Dahmen K A 2015 Scientific Reports 5 16493
[12] Ispánovity P D, Ugi D, Péterffy G, Knapek M, Kalácska S, Tüzes D, Dankházi Z, Máthis K, Chmelík F and Groma I 2022 Nat. Commun. 13 1975
[13] Lockner D 1993 International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30 883
[14] Salje E K H, Lampronti G I, Soto-Parra D E, Baró J, Planes A and Vives E 2013 American Mineralogist 98 609
[15] Ferdowsi B, Griffa M, Guyer R A, Johnson P A, Marone C and Carmeliet J 2015 Geophysical Research Letters 42 9750
[16] Lherminier S, Planet R, Vehel V L dit, Simon G, Vanel L, Maløy K J and Ramos O 2019 Phys. Rev. Lett. 122 218501
[17] Johnson P A, Savage H, Knuth M, Gomberg J and Marone C 2008 Nature 451 57
[18] Nataf G F, Castillo-Villa P O, Baró J, Illa X, Vives E, Planes A and Salje E K H 2014 Phys. Rev. E 90 022405
[19] Baró J, Corral A, Illa X, Planes A, Salje E K H, Schranz W, Soto-Parra D E and Vives E 2013 Phys. Rev. Lett. 110 088702
[20] Gutenberg B and Richter C F 1944 Bulletin of the Seismological Society of America 34 185
[21] Bak P, Christensen K, Danon L and Scanlon T 2002 Phys. Rev. Lett. 88 178501
[22] Karsai M, Kaski K, Barabási A L and Kertész J 2012 Scientific Reports 2 397
[23] Corral 2004 Phys. Rev. Lett. 92 108501
[24] Utsu T, Ogata Y and Matsu’ura S R 1995 Journal of Physics of the Earth 43 1
[25] Unnpórsson R 2013 Hit detection and determination in AE bursts Acoustic emission-research and applications 1-20
[26] Clauset A, Shalizi C R and Newman M E J 2009 SIAM Review 51 661
[27] Nanjo K Z, Hirata N, Obara K and Kasahara K 2012 Geophysical Research Letters 39 L20304
[28] Mousavi S M, Ogwari P O, Horton S P and Langston C A 2017 Physics of the Earth and Planetary Interiors 267 53
[29] Xie W, Hattori K, Han P and Shi H 2022 Entropy 24 494
[30] Gulia L and Wiemer S 2019 Nature 574 193
[31] Schorlemmer D, Wiemer S and Wyss M 2005 Nature 437 539
[32] Scholz C H 2015 Geophysical Research Letters 42 1399
[33] Xu H, Andresen J C and Regev I 2021 Phys. Rev. E 103 052604
[34] Hentschel H G E, Jaiswal P K, Procaccia I and Sastry S 2015 Phys. Rev. E 92 062302
[35] Zaliapin I and Ben-Zion Y 2016 Geophysical Journal International 207 608
[36] Livina V N, Havlin S and Bunde A 2005 Phys. Rev. Lett. 95 208501
[37] Stojanova M, Santucci S, Vanel L and Ramos O 2014 Phys. Rev. Lett. 112 115502
[38] Barés J, Dubois A, Hattali L, Dalmas D and Bonamy D 2018 Nat. Commun. 9 1253
[39] Parisi G 2023 Nobel Lecture: Multiple equilibria
[1] Exploring reservoir computing: Implementation via double stochastic nanowire networks
Jian-Feng Tang(唐健峰), Lei Xia(夏磊), Guang-Li Li(李广隶), Jun Fu(付军), Shukai Duan(段书凯), and Lidan Wang(王丽丹). Chin. Phys. B, 2024, 33(3): 037302.
[2] Numerical simulation for the initial state of avalanche in polydisperse particle systems
Ren Han(韩韧), Ting Li(李亭), Zhipeng Chi(迟志鹏), Hui Yang(杨晖), and Ran Li(李然). Chin. Phys. B, 2024, 33(2): 024501.
[3] Planar InAlAs/InGaAs avalanche photodiode with 360 GHz gain×bandwidth product
Shuai Wang(王帅), Han Ye(叶焓), Li-Yan Geng(耿立妍), Fan Xiao(肖帆), Yi-Miao Chu(褚艺渺), Yu Zheng(郑煜), and Qin Han(韩勤). Chin. Phys. B, 2023, 32(9): 098507.
[4] Model and data of optically controlled tunable capacitor in silicon single-photon avalanche diode
Mei-Ling Zeng(曾美玲), Yang Wang(汪洋), Xiang-Liang Jin(金湘亮), Yan Peng(彭艳), and Jun Luo(罗均). Chin. Phys. B, 2023, 32(7): 078502.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Improving dynamic characteristics for IGBTs by using interleaved trench gate
Yi-Fan Wu(吴毅帆), Gao-Qiang Deng(邓高强), Chen Tan(谭琛), Shi-Wei Liang(梁世维), and Jun Wang(王俊). Chin. Phys. B, 2023, 32(12): 128503.
[7] Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks
Jianshe Xie(谢建设) and Yumin Dong(董玉民). Chin. Phys. B, 2023, 32(12): 120302.
[8] Investigation of Ga2O3/diamond heterostructure solar-blind avalanche photodiode via TCAD simulation
Dun-Zhou Xu(许敦洲), Peng Jin(金鹏), Peng-Fei Xu(徐鹏飞), Meng-Yang Feng(冯梦阳), Ju Wu(吴巨), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2023, 32(10): 108504.
[9] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[10] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[11] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[12] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[13] Patterns of cross-correlation in time series: A case study of gait trails
Jia Song(宋佳), Tong-Feng Weng(翁同峰), Chang-Gui Gu(顾长贵), Hui-Jie Yang(杨会杰). Chin. Phys. B, 2020, 29(8): 080501.
[14] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[15] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
No Suggested Reading articles found!