Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087504    DOI: 10.1088/1674-1056/acafdc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film

Yang-Yang Fan(范洋洋)1,2, Jing Wang(王晶)1,3,†, Feng-Xia Hu(胡凤霞)1,3,4,‡, Bao-He Li(李宝河)2,§, Ai-Cong Geng(耿爱丛)2, Zhuo Yin(殷卓)1,3, Cheng Zhang(张丞)1,3, Hou-Bo Zhou(周厚博)1,3, Meng-Qin Wang(王梦琴)1,3, Zi-Bing Yu(尉紫冰)1,3, and Bao-Gen Shen(沈保根)1,3,4,5
1. Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. School of Physics, Beijing Technology and Business University, Beijing 100048, China;
3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China;
4. Songshan Lake Materials Laboratory, Dongguan 523808, China;
5. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  The origin of ferromagnetism in epitaxial strained LaCoO3-x films has long been controversial. Here, we investigated the magnetic behavior of a series of oxygen vacancy-ordered LaCoO3-x films on different substrates. Obvious ferromagnetism was observed in perovskite LaCoO3/LSAT (LSAT = (LaAlO3)0.3(SrAlTaO6)0.7) and LaCoO3/SrTiO3 films, while LaCoO3/LaAlO3 films showed weak ferromagnetic behavior. Meanwhile, LaCoO2.67 films exhibited antiferromagnetic behavior. An unexpected low-temperature ferromagnetic phenomenon with a Curie temperature of ~ 83 K and a saturation magnetization of ~ 1.2 μB/Co was discovered in 15 nm thick LaCoO2.5/LSAT thin films, which is probably related to the change in the interface CoO6 octahedron rotation pattern. Meanwhile, the observed ferromagnetism gradually disappeared as the thickness of the film increased, indicating a relaxation of tensile strain. Analysis suggests that the rotation and rhombohedral distortion of the CoO6 octahedron weakened the crystal field splitting and promoted the generation of the ordered high-spin state of Co2+. Thus the super-exchange effect between Co2+ (high spin state), Co2+ (low spin state) and Co2+(high spin state) produced a low-temperature ferromagnetic behavior. However, compressive-strained LaCoO2.5 film on a LaAlO3 substrate showed normal anti-ferromagnetic behavior. These results demonstrate that both oxygen vacancies and tensile strain are correlated with the emergent magnetic properties in epitaxial LaCoO3-x films and provide a new perspective to regulate the magnetic properties of transition oxide thin films.
Keywords:  transition metal oxides films      oxygen vacancy      topological phase transitions      magnetism  
Received:  16 September 2022      Revised:  11 November 2022      Accepted manuscript online:  04 January 2023
PACS:  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.47.Lx (Magnetic oxides)  
  72.15.-v (Electronic conduction in metals and alloys)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos.2020YFA0711502 and 2019YFA0704900), the National Natural Sciences Foundation of China (Grant Nos.52088101, 51971240, and 11921004), the Key Program of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB33030200).
Corresponding Authors:  Jing Wang, Feng-Xia Hu, Bao-He Li     E-mail:  wangjing@.iphy.ac.cn;fxhu@.iphy.ac.cn;lbhe@th.btbu.edu.cn

Cite this article: 

Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根) Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film 2023 Chin. Phys. B 32 087504

[1] Ngai J H, Walker F J and Ahn C H 2014 Annu Rev. Mater. Res. 44 1
[2] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802
[3] Jeong J, Aetukuri N, Graf T, Schladt T, Samant M and Parkin S 2013 Science 339 1402
[4] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[5] Guo E J, Desautels R, Keavney D, Roldan M A, Kirby B J, Lee D, Liao Z L, Charlton T, Herklotz A, Ward T Z, Fitzsimmons M R and Lee H N 2019 Sci. Adv. 5 evav5050
[6] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G and Löhneysen H V 2007 Phys. Rev. B 75 144402
[7] Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R and Löhneysen H V 2008 Phys. Rev. B 77 014434
[8] Jeen H, Choi W S, Freeland J W, Ohta H, Jung C U and Lee H N 2013 Adv. Mater. 25 3651
[9] Fujioka J, Yamasaki Y, Nakao H, Kumai R, Murakami Y, Nakamura M, Kawasaki M and Tokura Y 2013 Phys. Rev. Lett. 111 027206
[10] Chaturvedi V, Walter J, Paul A, Grutter A, Kirby B, Jeong J S, Zhou H, Zhang Z, Yu B Q, Greven M, Mkhoyan K A, Birol T and Leighton C 2020 Phys. Rev. Mater. 4 034403
[11] G J la O', Ahn S J, Crumlin E, Orikasa Y, Biegalski M D, Christen H M and Yang S H 2010 Angew. Chem. Int. Ed. 49 5344
[12] Phelan D, Louca D, Kamazawa K, Lee S H, Ancona S N, Rosenkranz S, Motome Y, Hundley M F, Mitchell J F and Moritomo Y 2006 Phys. Rev. Lett. 97 235501
[13] Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, Langenberg E, Trassin M, Blasco J, Krug I P, Algarabel P A, Spaldin N A, Pardo J A and Fiebig M 2015 Nat. Nanotechnol. 10 661
[14] Kalinin S V and Spaldin N A 2013 Science 341 858
[15] Mehta V V, Biskup N, Jenkins C, Arenholz E, Varela M and Suzuki Y 2015 Phys. Rev. B 91 144418
[16] McKee R A, Walker F J and Chisholm M F 1998 Phys. Rev. Lett. 81 3014
[17] Hong X, Posadas A and Ahn C H 2005 Appl. Phys. Lett. 86 142501
[18] Vogt T, Hriljac J A, Hyatt N C and Woodward P 2003 Phys. Rev. B 67 140401
[19] Biskup N, Salafranca J, Mwhta V, Oxley M P, Suzuki Y, Pennycook S J, Pantelides S T and Varela M 2014 Phys. Rev. Lett. 112 087202
[20] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501
[21] Seo H, Posadas A B, Mitra C, Kvit A V, Ramdani J and Demkov A A 2012 Phys. Rev. B 86 075301
[22] Sterbinsky G E, Nanguneri R, Ma J X, Shi J, Karapetrova E, Woicik J C, Park H, Kim J W and Ryan P J 2018 Phys. Rev. Lett. 120 197201
[23] Feng Q Y, Meng D C, Zhou H B, Liang G H, Cui Z Z, Huang H L, Wang J L, Guo J H, Ma C, Zhai X F, Lu Q Y and Lu Y L 2019 Phys. Rev. Mater. 3 074406
[24] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111
[25] Golosova N O, Kozlenko D P, Kolesnikov A I, Yu V Kazimirov, Smirnov M B, Jirak Z and Savenko B N 2007 Phys. Rev. B 83 214305
[26] Lan Q Q, Zhang X J, Shen X, Zhang J, Guan X X, Yao Y, Wang Y G, Yu R C, Peng Y and Sun J R 2015 Appl. Phys. Lett. 107 242404
[27] Yokoyama Y, Yamasaki Y, Taguchi M, Hirata Y, Takubo K, Miyawaki J, Harada Y, Asakura D, Fujioka J, Nakamura M, Daimon H, Kawasaki M, Tokura Y and Wadati H 2018 Phys. Rev. Lett. 120 206402
[28] Cabero M, Nagy K, Gallego F, Sander A, Rio M, Cuellar F A, Tornos J, Hernandez-Martin D, Nemes N M, Mompean F, Garcia-Hernandez M, Rivera-Calzada A, Sefrioui Z, Reyren N, Feher T, Varela M, Leon C and Santamaria J 2017 APL Mater. 5 096104
[29] Zhang N B, Zhu Y L, Li D, Pan D S, Tang Y L, Han M J, Ma J Y, Wu B, Zhang Z D and Ma X L 2018 Appl. Mater. Interfaces 10 38230
[30] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504
[31] An Q C, Xu Z, Wang Z Z, Meng M, Guan M X, Meng S, Zhu X T, Guo H Z, Yang F and Guo J D 2021 Appl. Phys. Lett. 118 081602
[32] Huang H L, Zhang J N, Zhang H, Han F R, Chen X B, Song J H, Zhang J, Qi S J, Chen Y S, Cai J W, Hu F X, Shen B G and Sun J R 2020 J. Phys. D 53 155003
[33] Li S S, Wang J S, Zhang Q H, Roldan M A, Shan L, Jin Q, Chen S, Wu Z P, Wang C, Ge C, He M, Guo H Z, Gu L, Jin K J and Guo E J 2019 Phys. Rev. Mater. 3 114409
[34] Meng D C, Guo H L, Cui Z Z, Ma C, Zhao J, Lug J B, Xu H, Wang Z C, Hu X, Fu Z P, Peng R R, Guo J H, Zhai X F, Browni G J, Knizej R and Lu Y L 2018 Proc. Natl. Acad. Sci. USA 115 2873
[35] Lu Q Y and Yildiz B 2015 Nano Lett. 16 1186
[36] Lei H T, Zhang Q X, Wang Y B, Gao Y M, Wang Y Z, Liang Z Z, Zhang W and Cao R 2021 Dalton Trans. 50 5120
[37] Jeen H, Choi W S, Freeland J W, Ohta H, Jung C U and Lee H N 2013 Adv. Mater. 25 3651
[38] Li J, Guan M X, Nan P F, Wang J, Ge B H, Qiao K M, Zhang H R, Liang W H, Hao J Z, Zhou H B, Shen F R, Liang F X, Zhang C, Liu M, Meng S, Zhu T, Hu F X, Wu T, Guo J D, Sun J R and Shen B G 2020 Nano Energy 78 105215
[39] Liu H F, Shi L, Guo Y Q, Zhou S M, Zhao J Y, Wang C L, He L F and Li Y 2014 J. Alloys Compd. 594 158
[40] Miao X B, Wu L, Lin Y, Yuan X Y, Zhao J Y, Yan W S, Zhou S M and Shi L 2019 Chem. Commun. 55 1442
[1] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[2] Crystal growth of CeMn0.85Sb2: Absence of magnetic order of Ce-sublattice
Yong Li(李勇), Shan-Shan Miao(苗杉杉), Hai Feng(冯海),Huai-Xin Yang(杨槐馨), and You-Guo Shi(石友国). Chin. Phys. B, 2023, 32(6): 067501.
[3] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[8] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[9] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[12] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[13] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[14] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[15] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
No Suggested Reading articles found!