CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film |
Yang-Yang Fan(范洋洋)1,2, Jing Wang(王晶)1,3,†, Feng-Xia Hu(胡凤霞)1,3,4,‡, Bao-He Li(李宝河)2,§, Ai-Cong Geng(耿爱丛)2, Zhuo Yin(殷卓)1,3, Cheng Zhang(张丞)1,3, Hou-Bo Zhou(周厚博)1,3, Meng-Qin Wang(王梦琴)1,3, Zi-Bing Yu(尉紫冰)1,3, and Bao-Gen Shen(沈保根)1,3,4,5 |
1. Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physics, Beijing Technology and Business University, Beijing 100048, China; 3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China; 4. Songshan Lake Materials Laboratory, Dongguan 523808, China; 5. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract The origin of ferromagnetism in epitaxial strained LaCoO3-x films has long been controversial. Here, we investigated the magnetic behavior of a series of oxygen vacancy-ordered LaCoO3-x films on different substrates. Obvious ferromagnetism was observed in perovskite LaCoO3/LSAT (LSAT = (LaAlO3)0.3(SrAlTaO6)0.7) and LaCoO3/SrTiO3 films, while LaCoO3/LaAlO3 films showed weak ferromagnetic behavior. Meanwhile, LaCoO2.67 films exhibited antiferromagnetic behavior. An unexpected low-temperature ferromagnetic phenomenon with a Curie temperature of ~ 83 K and a saturation magnetization of ~ 1.2 μB/Co was discovered in 15 nm thick LaCoO2.5/LSAT thin films, which is probably related to the change in the interface CoO6 octahedron rotation pattern. Meanwhile, the observed ferromagnetism gradually disappeared as the thickness of the film increased, indicating a relaxation of tensile strain. Analysis suggests that the rotation and rhombohedral distortion of the CoO6 octahedron weakened the crystal field splitting and promoted the generation of the ordered high-spin state of Co2+. Thus the super-exchange effect between Co2+ (high spin state), Co2+ (low spin state) and Co2+(high spin state) produced a low-temperature ferromagnetic behavior. However, compressive-strained LaCoO2.5 film on a LaAlO3 substrate showed normal anti-ferromagnetic behavior. These results demonstrate that both oxygen vacancies and tensile strain are correlated with the emergent magnetic properties in epitaxial LaCoO3-x films and provide a new perspective to regulate the magnetic properties of transition oxide thin films.
|
Received: 16 September 2022
Revised: 11 November 2022
Accepted manuscript online: 04 January 2023
|
PACS:
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos.2020YFA0711502 and 2019YFA0704900), the National Natural Sciences Foundation of China (Grant Nos.52088101, 51971240, and 11921004), the Key Program of the Chinese Academy of Sciences and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB33030200). |
Corresponding Authors:
Jing Wang, Feng-Xia Hu, Bao-He Li
E-mail: wangjing@.iphy.ac.cn;fxhu@.iphy.ac.cn;lbhe@th.btbu.edu.cn
|
Cite this article:
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根) Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film 2023 Chin. Phys. B 32 087504
|
[1] Ngai J H, Walker F J and Ahn C H 2014 Annu Rev. Mater. Res. 44 1 [2] Ling Z B, Zhang Q Y, Yang C P, Li X T, Liang W S, Wang Y Q, Yang H W and Sun J R 2020 Chin. Phys. B 29 096802 [3] Jeong J, Aetukuri N, Graf T, Schladt T, Samant M and Parkin S 2013 Science 339 1402 [4] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039 [5] Guo E J, Desautels R, Keavney D, Roldan M A, Kirby B J, Lee D, Liao Z L, Charlton T, Herklotz A, Ward T Z, Fitzsimmons M R and Lee H N 2019 Sci. Adv. 5 evav5050 [6] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G and Löhneysen H V 2007 Phys. Rev. B 75 144402 [7] Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R and Löhneysen H V 2008 Phys. Rev. B 77 014434 [8] Jeen H, Choi W S, Freeland J W, Ohta H, Jung C U and Lee H N 2013 Adv. Mater. 25 3651 [9] Fujioka J, Yamasaki Y, Nakao H, Kumai R, Murakami Y, Nakamura M, Kawasaki M and Tokura Y 2013 Phys. Rev. Lett. 111 027206 [10] Chaturvedi V, Walter J, Paul A, Grutter A, Kirby B, Jeong J S, Zhou H, Zhang Z, Yu B Q, Greven M, Mkhoyan K A, Birol T and Leighton C 2020 Phys. Rev. Mater. 4 034403 [11] G J la O', Ahn S J, Crumlin E, Orikasa Y, Biegalski M D, Christen H M and Yang S H 2010 Angew. Chem. Int. Ed. 49 5344 [12] Phelan D, Louca D, Kamazawa K, Lee S H, Ancona S N, Rosenkranz S, Motome Y, Hundley M F, Mitchell J F and Moritomo Y 2006 Phys. Rev. Lett. 97 235501 [13] Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, Langenberg E, Trassin M, Blasco J, Krug I P, Algarabel P A, Spaldin N A, Pardo J A and Fiebig M 2015 Nat. Nanotechnol. 10 661 [14] Kalinin S V and Spaldin N A 2013 Science 341 858 [15] Mehta V V, Biskup N, Jenkins C, Arenholz E, Varela M and Suzuki Y 2015 Phys. Rev. B 91 144418 [16] McKee R A, Walker F J and Chisholm M F 1998 Phys. Rev. Lett. 81 3014 [17] Hong X, Posadas A and Ahn C H 2005 Appl. Phys. Lett. 86 142501 [18] Vogt T, Hriljac J A, Hyatt N C and Woodward P 2003 Phys. Rev. B 67 140401 [19] Biskup N, Salafranca J, Mwhta V, Oxley M P, Suzuki Y, Pennycook S J, Pantelides S T and Varela M 2014 Phys. Rev. Lett. 112 087202 [20] Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501 [21] Seo H, Posadas A B, Mitra C, Kvit A V, Ramdani J and Demkov A A 2012 Phys. Rev. B 86 075301 [22] Sterbinsky G E, Nanguneri R, Ma J X, Shi J, Karapetrova E, Woicik J C, Park H, Kim J W and Ryan P J 2018 Phys. Rev. Lett. 120 197201 [23] Feng Q Y, Meng D C, Zhou H B, Liang G H, Cui Z Z, Huang H L, Wang J L, Guo J H, Ma C, Zhai X F, Lu Q Y and Lu Y L 2019 Phys. Rev. Mater. 3 074406 [24] Aschauer U, Pfenninger R, Selbach S M, Grande T and Spaldin N A 2013 Phys. Rev. B 88 054111 [25] Golosova N O, Kozlenko D P, Kolesnikov A I, Yu V Kazimirov, Smirnov M B, Jirak Z and Savenko B N 2007 Phys. Rev. B 83 214305 [26] Lan Q Q, Zhang X J, Shen X, Zhang J, Guan X X, Yao Y, Wang Y G, Yu R C, Peng Y and Sun J R 2015 Appl. Phys. Lett. 107 242404 [27] Yokoyama Y, Yamasaki Y, Taguchi M, Hirata Y, Takubo K, Miyawaki J, Harada Y, Asakura D, Fujioka J, Nakamura M, Daimon H, Kawasaki M, Tokura Y and Wadati H 2018 Phys. Rev. Lett. 120 206402 [28] Cabero M, Nagy K, Gallego F, Sander A, Rio M, Cuellar F A, Tornos J, Hernandez-Martin D, Nemes N M, Mompean F, Garcia-Hernandez M, Rivera-Calzada A, Sefrioui Z, Reyren N, Feher T, Varela M, Leon C and Santamaria J 2017 APL Mater. 5 096104 [29] Zhang N B, Zhu Y L, Li D, Pan D S, Tang Y L, Han M J, Ma J Y, Wu B, Zhang Z D and Ma X L 2018 Appl. Mater. Interfaces 10 38230 [30] Wei W G, Wang H, Zhang K, Liu H, Kou Y F, Chen J J, Du K, Zhu Y Y, Hou D L, Wu R Q, Yin L F and Shen J 2015 Chin. Phys. Lett. 32 087504 [31] An Q C, Xu Z, Wang Z Z, Meng M, Guan M X, Meng S, Zhu X T, Guo H Z, Yang F and Guo J D 2021 Appl. Phys. Lett. 118 081602 [32] Huang H L, Zhang J N, Zhang H, Han F R, Chen X B, Song J H, Zhang J, Qi S J, Chen Y S, Cai J W, Hu F X, Shen B G and Sun J R 2020 J. Phys. D 53 155003 [33] Li S S, Wang J S, Zhang Q H, Roldan M A, Shan L, Jin Q, Chen S, Wu Z P, Wang C, Ge C, He M, Guo H Z, Gu L, Jin K J and Guo E J 2019 Phys. Rev. Mater. 3 114409 [34] Meng D C, Guo H L, Cui Z Z, Ma C, Zhao J, Lug J B, Xu H, Wang Z C, Hu X, Fu Z P, Peng R R, Guo J H, Zhai X F, Browni G J, Knizej R and Lu Y L 2018 Proc. Natl. Acad. Sci. USA 115 2873 [35] Lu Q Y and Yildiz B 2015 Nano Lett. 16 1186 [36] Lei H T, Zhang Q X, Wang Y B, Gao Y M, Wang Y Z, Liang Z Z, Zhang W and Cao R 2021 Dalton Trans. 50 5120 [37] Jeen H, Choi W S, Freeland J W, Ohta H, Jung C U and Lee H N 2013 Adv. Mater. 25 3651 [38] Li J, Guan M X, Nan P F, Wang J, Ge B H, Qiao K M, Zhang H R, Liang W H, Hao J Z, Zhou H B, Shen F R, Liang F X, Zhang C, Liu M, Meng S, Zhu T, Hu F X, Wu T, Guo J D, Sun J R and Shen B G 2020 Nano Energy 78 105215 [39] Liu H F, Shi L, Guo Y Q, Zhou S M, Zhao J Y, Wang C L, He L F and Li Y 2014 J. Alloys Compd. 594 158 [40] Miao X B, Wu L, Lin Y, Yuan X Y, Zhao J Y, Yan W S, Zhou S M and Shi L 2019 Chem. Commun. 55 1442 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|