|
|
Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries |
Zilin Hu(胡紫霖)1,2,†, Bin Tang(唐彬)6,†, Ting Lin(林挺)5, Chu Zhang(张楚)1,2, Yaoshen Niu(牛耀申)1, Yuan Liu(刘渊)1,2, Like Gao(高立克)7, Fei Xie(谢飞)1, Xiaohui Rong(容晓晖)1,4, Yaxiang Lu(陆雅翔)1,3,‡, and Yongsheng Hu(胡勇胜)1,2,3,4,§ |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China; 4 Yangtze River Delta Physics Research Center Co. Ltd, Liyang 213300, China; 5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China; 6 Yangtze River Delta Physics Research Center Co. Ltd, Liyang 213300, China; 7 Guangxi Power Grid Co. Ltd., Nanning 530023, China |
|
|
Abstract In Na-ion batteries, O3-type layered oxide cathode materials encounter challenges such as particle cracking, oxygen loss, electrolyte side reactions, and multi-phase transitions during the charge/discharge process. This study focuses on surface coating with NiTiO$_{3}$ achieved via secondary heat treatment using a coating precursor and the surface material. Through in-situ x-ray diffraction (XRD) and differential electrochemical mass spectrometry (DEMS), along with crystal structure characterizations of post-cycling materials, it was determined that the NiTiO$_{3}$ coating layer facilitates the formation of a stable lattice structure, effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte. This enhancement in cycling stability was evidenced by a capacity retention of approximately 74% over 300 cycles at 1 C, marking a significant 30% improvement over the initial sample. Furthermore, notable advancements in rate performance were observed. Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase, presenting a novel approach for designing layered oxide cathodes with higher energy density.
|
Received: 16 April 2024
Revised: 07 May 2024
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.45.Fk
|
(Electrodes)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFB2402500), the National Natural Science Foundation of China (Grant Nos. 52122214, 92372116, and 52394174), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology BE2022002-5), and Guangxi Power Grid Project (Grant No. GXKJXM20210260). |
Corresponding Authors:
Yaxiang Lu, Yongsheng Hu
E-mail: yxlu@iphy.ac.cn;yshu@iphy.ac.cn
|
Cite this article:
Zilin Hu(胡紫霖), Bin Tang(唐彬), Ting Lin(林挺), Chu Zhang(张楚), Yaoshen Niu(牛耀申), Yuan Liu(刘渊), Like Gao(高立克), Fei Xie(谢飞), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yongsheng Hu(胡勇胜) Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries 2024 Chin. Phys. B 33 088202
|
[1] Song S, Kotobuki M, Chen Y, Manzhos S, Xu C, Hu N and Lu L 2017 Sci. Rep. 7 373 [2] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636 [3] Gao J, Sun K, Guo H, Li Z, Wang J, Ma X, Bai X and Chen D 2022 Chin. Phys. B 31 098201 [4] Xi K, Chu S, Zhang X, Zhang X, Zhang H, Xu H, Bian J, Fang T, Guo S, Liu P, Chen M and Zhou H 2020 Nano Energy 67 104215 [5] Zhao C, Lu Y, Chen L and Hu Y S 2019 Nano Res. 12 2018 [6] Ding Y, Ding F, Rong X, Lu Y and Hu Y S 2022 Chin. Phys. B 31 068201 [7] Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L and Guo Y G 2018 Sci. Adv. 4 eaar6018 [8] Sathiya M, Jacquet Q, Doublet M L, Karakulina O M, Hadermann J and Tarascon J-M 2018 Adv. Energy Mater. 8 1702599 [9] Hwang J Y, Oh S M, Myung S T, Chung K Y, Belharouak I and Sun Y K 2015 Nat. Commun. 6 6865 [10] Guo Y J, Wang P F, Niu Y B, Zhang X D, Li Q, Yu X, Fan M, Chen W P, Yu Y, Liu X, Meng Q, Xin S, Yin Y X and Guo Y G 2021 Nat. Commun. 12 5267 [11] You Y and Manthiram A 2017 Adv. Energy Mater. 8 1701785 [12] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 [13] Lee E, Brown D E, Alp E E, Ren Y, Lu J, Woo J J and Johnson C S 2015 Chem. Mater. 27 6755 [14] Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H A and Zhou C 2016 Nano Energy 27 27 [15] Yu Y, Kong W, Li Q, Ning D, Schuck G, Schumacher G, Su C and Liu X 2020 ACS Appl. Energy Mater. 3 933 [16] Ramasamy H V, Kaliyappan K, Thangavel R, Aravindan V, Kang K, Kim D U, Park Y I, Sun X and Lee Y S 2017 J. Mater. Chem. A 5 13842 [17] Zhou Y, Lee Y, Sun H, Wallas J M, George S M and Xie M 2017 ACS Appl. Mater. Inter. 9 9614 [18] Tan Z, Chen X, Li Y, Xi X, Hao S, Li X, Shen X, He Z, Zhao W and Yang Y 2023 Adv. Funct. Mater. 33 2215123 [19] Jo J H, Choi J U, Konarov A, Yashiro H, Yuan S, Shi L, Sun Y K and Myung S T 2018 Adv. Funct. Mater. 28 1705968 [20] Jo C H, Jo J H, Yashiro H, Kim S J, Sun Y K and Myung S T 2018 Adv. Energy Mater. 8 1702942 [21] Yang H, Gao R M, Zhang X D, Liang J Y, Meng X H, Lu Z Y, Cao F F and Ye H 2022 Adv. Mater. 34 e2204835 [22] Wang H, Ding F, Wang Y, Han Z, Dang R, Yu H, Yang Y, Chen Z, Li Y, Xie F, Zhang S, Zhang H, Song D, Rong X, Zhang L, Xu J, Yin W, Lu Y, Xiao R, Su D, Chen L and Hu Y S 2023 ACS Energy Lett. 8 1434 [23] Wang L, Liu T, Wu T and Lu J 2022 Nature 611 61 [24] Wang L, Liu G, Wang R, Wang X, Wang L, Yao Z, Zhan C and Lu J 2023 Adv. Mater. 35 2209483 [25] Gao M, Yan C, Shao Q, Chen J, Zhang C, Chen G, Jiang Y, Zhu T, Sun W, Liu Y, Gao M and Pan H 2021 Small 17 2008132 [26] Cai M, Dong Y, Xie M, Dong W, Dong C, Dai P, Zhang H, Wang X, Sun X, Zhang S, Yoon M, Xu H, Ge Y, Li J and Huang F 2023 Nat. Energy 8 159 [27] Tang Y, Wu L, Xiao L, Wen D, Guo Q and Liang W 2018 Ceram. Int. 44 18025 [28] Majumder T, Das D and Majumder S B 2021 Mater. Lett. 301 130293 [29] Yang H, Zhang Q, Chen M, Yang Y and Zhao J 2023 Adv. Funct. Mater. 34 2308257 [30] Ding F, Zhao C, Zhou D, Meng Q, Xiao D, Zhang Q, Niu Y, Li Y, Rong X, Lu Y, Chen L and Hu Y S 2020 Energy Storage Mater. 30 420 [31] Blöchl P E 1994 Phys. Rev. B 50 17953 [32] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15 [33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [34] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107 [35] Shi Q, Qi R, Feng X, Wang J, Li Y, Yao Z, Wang X, Li Q, Lu X, Zhang J and Zhao Y 2022 Nat. Commun. 13 3205 [36] Li M W, Yuan J P, Gao X M, Liang E Q and Wang C Y 2016 Appl. Phys. A 122 725 [37] Paramanik L, Subudhi S and Parida K M 2022 Mater. Res. Bull. 155 111965 [38] Xu W, Dang R, Zhou L, Yang Y, Lin T, Guo Q, Xie F, Hu Z, Ding F, Liu Y, Liu Y, Mao H, Hong J, Zuo Z, Wang X, Yang R, Jin X, Lu Y, Rong X, Xu N and Hu Y S 2023 Adv. Mater. 35 e2301314 [39] Ding W, Ren H, Li Z, Shang M, Song Y, Zhao W, Chang L, Pang T, Xu S, Yi H, Zhou L, Lin H, Zhao Q and Pan F 2024 Adv. Energy Mater. 14 2303926 [40] Yoda Y, Kubota K, Kuroki K, Suzuki S, Yamanaka K, Yaji T, Amagasa S, Yamada Y, Ohta T and Komaba S2020 Small 16 e2006483 [41] Niu Y, Hu Z, Zhang B, Xiao D, Mao H, Zhou L, Ding F, Liu Y, Yang Y, Xu J, Yin W, Zhang N, Li Z, Yu X, Hu H, Lu Y, Rong X, Li J and Hu Y S 2023 Adv. Energy Mater. 13 2300746 [42] Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov A V, Abakumov A M and Tarascon J M 2020 Chem. Mater. 32 1657 [43] Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M and Tarascon J M 2019 Adv. Energy Mater. 9 1901785 [44] Zheng J, Gu M, Xiao J, Zuo P, Wang C and Zhang J G 2013 Nano Lett. 13 3824 [45] Zhang H, Omenya F, Yan P, Luo L, Whittingham M S, Wang C and Zhou G 2017 ACS Energy Lett. 2 2607 [46] Du X Y, Meng Y, Yuan H and Xiao D 2023 Energy Storage Mater. 56 132 [47] Zhang K, Xu Z, Li G, Luo R J, Ma C, Wang Y, Zhou Y N and Xia Y 2023 Adv. Energy Mater. 13 2302793 [48] Yang X, Wang C, Yan P, Jiao T, Hao J, Jiang Y, Ren F, Zhang W, Zheng J, Cheng Y, Wang X, Yang W, Zhu J, Pan S, Lin M, Zeng L, Gong Z, Li J and Yang Y 2022 Adv. Energy Mater. 12 2200197 [49] Ding F, Zhao C, Xiao D, Rong X, Wang H, Li Y, Yang Y, Lu Y and Hu Y S 2022 J. Am. Chem. Soc. 144 8286 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|