Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 106801    DOI: 10.1088/1674-1056/ad7671
RAPID COMMUNICATION Prev   Next  

Pit density reduction for AlN epilayers grown by molecular beam epitaxy using Al modulation method

Huan Liu(刘欢)1, Peng-Fei Shao(邵鹏飞)1,2, Song-Lin Chen(陈松林)1, Tao Tao(陶涛)1, Yu Yan(严羽)1, Zi-Li Xie(谢自力)1, Bin Liu(刘斌)1, Dun-Jun Chen(陈敦军)1, Hai Lu(陆海)1,2, Rong Zhang(张荣)1,2,3, and Ke Wang(王科)1,2,†
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Hefei National Laboratory, Hefei 230088, China;
3 Xiamen University, Xiamen 361005, China
Abstract  We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates by adopting both the continuous growth method and the Al modulation epitaxy (AME) growth method. The continuous growth method encounters significant challenges in controlling the growth mode. As the precise $\rm Al/N=1.0$ ratio is difficult to achieve, either the excessive Al-rich or N-rich growth mode occurs. In contrast, by adopting the AME growth method, such a difficulty has been effectively overcome. By manipulating the supply time of the Al and nitrogen sources, we were able to produce AlN films with much improved surface morphology. The first step of the AME method, only supplying Al atoms, is important to wet the surface and the Al adatoms can act as a surfactant. Optimization of the initial Al supply time can effectively reduce the pit density on the grown AlN surface. The pits density dropped from 12 pitsμm$^2$ to 1 pitμm$^2$ and the surface roughness reduced from 0.72 nm to 0.3 nm in a $2\times 2 $ μm$^2$ area for the AME AlN film homoepitaxially grown on an AlN template.
Keywords:  Al modulation epitaxy      molecular beam epitaxy      AlN      pits  
Received:  05 July 2024      Revised:  24 August 2024      Accepted manuscript online:  03 September 2024
PACS:  68.55.-a (Thin film structure and morphology)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  77.55.hd (AlN)  
  61.72.Ff (Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303400), the National Key R&D Program of China (Grant No. 2022YFB3605602), the Key R&D Program of Jiangsu Province (Grant Nos. BE2020004-3 and BE2021026), the National Naturaal Science Foundation of China (Grant No. 61974065), and Jiangsu Special Professorship, Collaborative Innovation Center of Solid-State Lighting and Energysaving Electronics.
Corresponding Authors:  Ke Wang     E-mail:  kewang@nju.edu.cn

Cite this article: 

Huan Liu(刘欢), Peng-Fei Shao(邵鹏飞), Song-Lin Chen(陈松林), Tao Tao(陶涛), Yu Yan(严羽), Zi-Li Xie(谢自力), Bin Liu(刘斌), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), and Ke Wang(王科) Pit density reduction for AlN epilayers grown by molecular beam epitaxy using Al modulation method 2024 Chin. Phys. B 33 106801

[1] Melo E G and Alayo M I 2015 Photonics and NanostructuresFundamentals and Applications 14 35
[2] Wang C, Gao X D, Li D D, Chen J J, Chen J F, Dong X M, Wang X D, Huang J, Zeng X H and Xu K 2023 Chin. Phys. B 32 026802
[3] Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T and Yang S 2022 Chin. Phys. Lett. 39 058101
[4] Bondokov R T, Mueller S G, Morgan K E, Slack G A, Schujman S, Wood M C and Schowalter L J 2008 J. Cryst. Growth 310 4020
[5] Fukuyama H, Miyake H, Nishio G, Suzuki S and Hiramatsu K 2016 Jpn. J. Appl. Phys. 55 5S
[6] Zhao L, Yang K, Ai Y, Zhang L, Niu X, Lv H and Zhang Y 2018 Journal of Materials Science: Materials in Electronics 29 13766
[7] Nakarmi M L, Cai B, Lin J Y and Jiang H X 2012 Phys. Status Solidi A 209 126
[8] Wu Y Z, Liu B, Li Z H, Tao T, Xie Z L, Xiu X Q, Chen P, Chen D J, Lu H, Shi Y and Zhang R 2019 J. Cryst. Growth 506 30
[9] Heying B, Averbeck R, Chen L F, Haus E, Riechert H and Speck J S 2000 Appl. Phys. 88 1855
[10] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102
[11] Kaneko M, Hirai K, Kimoto T and Suda J 2020 Appl. Phys. Express 13 025503
[12] Cho Y J, Chang C S, Lee K, Nomoto K, Toita M, Schowalter L, Muller D A and Jena D 2020 Appl. Phys. Lett. 116 172106
[13] Lee K, Cho Y J, Schowalter L J, Toita M, Xing H G and Jena D 2020 Appl. Phys. Lett. 116 262102
[14] Yamaguchi T, Uematsu N, Araki T, Honda T, Yoon E and Nanishi Y 2013 Cryst. Growth 377 123
[15] Burnham S D, Henderson W and Doolittle W A 2008 Phys. Status Solidi C 5 1855
[16] Burnham S D, Namkoong G, Lee K K and Doolittle W A 2007 J. Vac. Sci. Tech. B 25 3
[17] Shao P F, Li S Q, Li Z H, Zhou H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Chen D J, Liu B, Zheng Y D, Zhang R, Tsungtse L, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002
[18] Nakajima A, Furukawa Y, Koga S and Yonezu H 2004 J. Cryst. Growth 265 351
[19] Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Tsungtse L, Wang L and Hirayama H 2021 Jpn. J. Appl. Phys. 60 075504
[20] Nechaev D V, Koshelev O A, Ratnikov V, Brunkov P N, Myasoedov A V, Sitnikova A, Ivanov S V and Jmerik V N 2020 Superlattice Microst. 138 106368
[21] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Jpn. J. Appl. Phys. 44 L906
[22] Horikoshi Y, Kawashima M and Yamaguchi H 1987 Appl. Phys. Lett. 50 1686
[23] Northrup J E, Neugebauer J, Feenstra R M and Smith A R 2000 Phys. Rev. B 61 9932
[24] Heying B, Smorchkova I, Poblenz C, Fini P, Denbaars S, Mishra U and Speck J S 2000 Appl. Phys. Lett. 77 2885
[25] Koblmüller G, Averbeck R, Riechert H and Pongratz P 2004 Phys. Rev. B 69 35325
[26] Neugebauer J, Zywietz T K, Scheffler M, Neugebauer, Northrup J E, Chen H J and Feenstra R M 2003 Phys. Rev. Lett. 90 56101
[27] Koshelev O A, Dmitrii V N and Pavel N B 2021 Semicond. Sci. Technol. 36 035007
[28] Nechaev D V, Aseev P A and Jmerik V N 2013 J. Cryst. Growth 378 319
[29] Nilsson D, Janzén E and Kakanakova G A 2016 J. Phys. D: Appl. Phys. 49 175108
[30] Dinh D V, Hu N, Honda Y, Amano H and Markus P 2018 J. Cryst. Growth 498 377
[31] Christoph A, Julien B, Guido M and Bruno D 2003 Phys. Rev. B 67 165419
[32] Gallinat C S, Koblmueller G, Brown J S and Speck J S 2007 J. Appl. Phys. 102 064907
[33] Feenstra R M, Dong Y and Lee C D 2005 J. Vac. Sci. Tech. B 23 1174
[1] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[2] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[3] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[4] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[5] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[6] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[7] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[8] Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications
Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鹏飞), Can Gong(龚灿), Yilin Chen(陈怡霖), Zhihong Chen(陈治宏), Jielong Liu(刘捷龙), Mei Yang(杨眉), Meng Zhang(张濛), Qing Zhu(朱青), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(12): 127102.
[9] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[10] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[13] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[14] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[15] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
No Suggested Reading articles found!