|
|
Pit density reduction for AlN epilayers grown by molecular beam epitaxy using Al modulation method |
Huan Liu(刘欢)1, Peng-Fei Shao(邵鹏飞)1,2, Song-Lin Chen(陈松林)1, Tao Tao(陶涛)1, Yu Yan(严羽)1, Zi-Li Xie(谢自力)1, Bin Liu(刘斌)1, Dun-Jun Chen(陈敦军)1, Hai Lu(陆海)1,2, Rong Zhang(张荣)1,2,3, and Ke Wang(王科)1,2,† |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Hefei National Laboratory, Hefei 230088, China; 3 Xiamen University, Xiamen 361005, China |
|
|
Abstract We have investigated homoepitaxy of AlN films grown by molecular beam epitaxy on AlN/sapphire templates by adopting both the continuous growth method and the Al modulation epitaxy (AME) growth method. The continuous growth method encounters significant challenges in controlling the growth mode. As the precise $\rm Al/N=1.0$ ratio is difficult to achieve, either the excessive Al-rich or N-rich growth mode occurs. In contrast, by adopting the AME growth method, such a difficulty has been effectively overcome. By manipulating the supply time of the Al and nitrogen sources, we were able to produce AlN films with much improved surface morphology. The first step of the AME method, only supplying Al atoms, is important to wet the surface and the Al adatoms can act as a surfactant. Optimization of the initial Al supply time can effectively reduce the pit density on the grown AlN surface. The pits density dropped from 12 pitsμm$^2$ to 1 pitμm$^2$ and the surface roughness reduced from 0.72 nm to 0.3 nm in a $2\times 2 $ μm$^2$ area for the AME AlN film homoepitaxially grown on an AlN template.
|
Received: 05 July 2024
Revised: 24 August 2024
Accepted manuscript online: 03 September 2024
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
77.55.hd
|
(AlN)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303400), the National Key R&D Program of China (Grant No. 2022YFB3605602), the Key R&D Program of Jiangsu Province (Grant Nos. BE2020004-3 and BE2021026), the National Naturaal Science Foundation of China (Grant No. 61974065), and Jiangsu Special Professorship, Collaborative Innovation Center of Solid-State Lighting and Energysaving Electronics. |
Corresponding Authors:
Ke Wang
E-mail: kewang@nju.edu.cn
|
Cite this article:
Huan Liu(刘欢), Peng-Fei Shao(邵鹏飞), Song-Lin Chen(陈松林), Tao Tao(陶涛), Yu Yan(严羽), Zi-Li Xie(谢自力), Bin Liu(刘斌), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), and Ke Wang(王科) Pit density reduction for AlN epilayers grown by molecular beam epitaxy using Al modulation method 2024 Chin. Phys. B 33 106801
|
[1] Melo E G and Alayo M I 2015 Photonics and NanostructuresFundamentals and Applications 14 35 [2] Wang C, Gao X D, Li D D, Chen J J, Chen J F, Dong X M, Wang X D, Huang J, Zeng X H and Xu K 2023 Chin. Phys. B 32 026802 [3] Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T and Yang S 2022 Chin. Phys. Lett. 39 058101 [4] Bondokov R T, Mueller S G, Morgan K E, Slack G A, Schujman S, Wood M C and Schowalter L J 2008 J. Cryst. Growth 310 4020 [5] Fukuyama H, Miyake H, Nishio G, Suzuki S and Hiramatsu K 2016 Jpn. J. Appl. Phys. 55 5S [6] Zhao L, Yang K, Ai Y, Zhang L, Niu X, Lv H and Zhang Y 2018 Journal of Materials Science: Materials in Electronics 29 13766 [7] Nakarmi M L, Cai B, Lin J Y and Jiang H X 2012 Phys. Status Solidi A 209 126 [8] Wu Y Z, Liu B, Li Z H, Tao T, Xie Z L, Xiu X Q, Chen P, Chen D J, Lu H, Shi Y and Zhang R 2019 J. Cryst. Growth 506 30 [9] Heying B, Averbeck R, Chen L F, Haus E, Riechert H and Speck J S 2000 Appl. Phys. 88 1855 [10] Li Z H, Shao P F, Shi G J, Wu Y Z, Wang Z P, Li S Q, Zhang D Q, Tao T, Xu Q J, Xie Z L, Ye J D, Chen D J, Liu B, Wang K, Zheng Y D and Zhang R 2022 Chin. Phys. B 31 018102 [11] Kaneko M, Hirai K, Kimoto T and Suda J 2020 Appl. Phys. Express 13 025503 [12] Cho Y J, Chang C S, Lee K, Nomoto K, Toita M, Schowalter L, Muller D A and Jena D 2020 Appl. Phys. Lett. 116 172106 [13] Lee K, Cho Y J, Schowalter L J, Toita M, Xing H G and Jena D 2020 Appl. Phys. Lett. 116 262102 [14] Yamaguchi T, Uematsu N, Araki T, Honda T, Yoon E and Nanishi Y 2013 Cryst. Growth 377 123 [15] Burnham S D, Henderson W and Doolittle W A 2008 Phys. Status Solidi C 5 1855 [16] Burnham S D, Namkoong G, Lee K K and Doolittle W A 2007 J. Vac. Sci. Tech. B 25 3 [17] Shao P F, Li S Q, Li Z H, Zhou H, Zhang D Q, Tao T, Yan Y, Xie Z L, Wang K, Chen D J, Liu B, Zheng Y D, Zhang R, Tsungtse L, Wang L and Hirayama H 2022 J. Phys. D: Appl. Phys. 55 364002 [18] Nakajima A, Furukawa Y, Koga S and Yonezu H 2004 J. Cryst. Growth 265 351 [19] Li Z H, Shao P F, Wu Y Z, Shi G J, Tao T, Xie Z L, Chen P, Zhou Y G, Xiu X Q, Chen D J, Liu B, Wang K, Zheng Y D, Zhang R, Tsungtse L, Wang L and Hirayama H 2021 Jpn. J. Appl. Phys. 60 075504 [20] Nechaev D V, Koshelev O A, Ratnikov V, Brunkov P N, Myasoedov A V, Sitnikova A, Ivanov S V and Jmerik V N 2020 Superlattice Microst. 138 106368 [21] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Jpn. J. Appl. Phys. 44 L906 [22] Horikoshi Y, Kawashima M and Yamaguchi H 1987 Appl. Phys. Lett. 50 1686 [23] Northrup J E, Neugebauer J, Feenstra R M and Smith A R 2000 Phys. Rev. B 61 9932 [24] Heying B, Smorchkova I, Poblenz C, Fini P, Denbaars S, Mishra U and Speck J S 2000 Appl. Phys. Lett. 77 2885 [25] Koblmüller G, Averbeck R, Riechert H and Pongratz P 2004 Phys. Rev. B 69 35325 [26] Neugebauer J, Zywietz T K, Scheffler M, Neugebauer, Northrup J E, Chen H J and Feenstra R M 2003 Phys. Rev. Lett. 90 56101 [27] Koshelev O A, Dmitrii V N and Pavel N B 2021 Semicond. Sci. Technol. 36 035007 [28] Nechaev D V, Aseev P A and Jmerik V N 2013 J. Cryst. Growth 378 319 [29] Nilsson D, Janzén E and Kakanakova G A 2016 J. Phys. D: Appl. Phys. 49 175108 [30] Dinh D V, Hu N, Honda Y, Amano H and Markus P 2018 J. Cryst. Growth 498 377 [31] Christoph A, Julien B, Guido M and Bruno D 2003 Phys. Rev. B 67 165419 [32] Gallinat C S, Koblmueller G, Brown J S and Speck J S 2007 J. Appl. Phys. 102 064907 [33] Feenstra R M, Dong Y and Lee C D 2005 J. Vac. Sci. Tech. B 23 1174 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|