Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 106501    DOI: 10.1088/1674-1056/ad6078
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermal conductivity of iron under the Earth's inner core pressure

Cui-E Hu(胡翠娥)1, Mu-Xin Jiao(焦亩鑫)1, Xue-Nan Yang(杨学楠)1, Zhao-Yi Zeng(曾召益)1,2,†, and Jun Chen(陈军)2,3,‡
1 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China;
2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
3 Center for Applied Physics and Technology, Peking University, Beijing 100071, China
Abstract  The thermal conductivity of $\varepsilon $-iron at high pressure and high temperature is a key parameter to constrain the dynamics and thermal evolution of the Earth's core. In this work, we use first-principles calculations to study the Hugoniot sound velocity and the thermal transport properties of $\varepsilon $-iron. The total thermal conductivity considering lattice vibration is 200 W/mK at the Earth's inner core conditions. The suppressed anharmonic interactions can significantly enhance the lattice thermal conductivity under high pressure, and the contribution of the lattice thermal conductivity should not be ignored under the Earth's core conditions.
Keywords:  thermal conductivity      first-principles      high pressure and high temperature  
Received:  18 April 2024      Revised:  20 June 2024      Accepted manuscript online:  09 July 2024
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  62.20.-x (Mechanical properties of solids)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12072044) and the Natural Science Foundation of Chongqing City (Grant No. cstc2020jcyjmsxmX0616).
Corresponding Authors:  Zhao-Yi Zeng, Jun Chen     E-mail:  zhaoyizeng@cqnu.edu.cn;jun_chen@iapcm.ac.cn

Cite this article: 

Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军) Thermal conductivity of iron under the Earth's inner core pressure 2024 Chin. Phys. B 33 106501

[1] Hirose K, Labrosse S and Hernlund J 2013 Annual Review of Earth and Planetary Sciences 41 657
[2] Poirier J P 1994 Physics of the Earth and Planetary Interiors 85 319
[3] Huang H, Fan L, Liu X, Xu F, Wu Y, Yang G, Leng C, Wang Q, Weng J and Wang X 2022 Nat. Commun. 13 616
[4] Mao H K, Shu J, Shen G, Hemley R J, Li B and Singh A K 1998 Nature 396 741
[5] Alfè D, Price G D and Gillan M J 2001 Phys. Rev. B 64 045123
[6] Zhang Y, Luo K, Hou M, Driscoll P, Salke N P, Minár J, Prakapenka V B, Greenberg E, Hemley R J and Cohen R E 2022 Proc. Natl. Acad. Sci. USA 119 e2119001119
[7] Zhang Y, Wang Y, Huang Y, Wang J, Liang Z, Hao L, Gao Z, Li J, Wu Q and Zhang H 2023 Proc. Natl. Acad. Sci. USA 120 e2309952120
[8] Nguyen J H and Holmes N C 2004 Nature 427 339
[9] Tateno S, Hirose K, Ohishi Y and Tatsumi Y 2010 Science 330 359
[10] Vočadlo L, Alfè D, Gillan M, Wood I, Brodholt J and Price G D 2003 Nature 424 536
[11] Belonoshko A B, Ahuja R and Johansson B 2003 Nature 424 1032
[12] Belonoshko A B, Lukinov T, Fu J, Zhao J, Davis S and Simak S I 2017 Nature Geoscience 10 312
[13] Niu Z W, Zeng Z Y, Cai L C and Chen X R 2015 Physics of the Earth and Planetary Interiors 248 12
[14] Chen X R, Zeng Z Y, Liu Z L, Cai L C and Jing F Q 2011 Phys. Rev. B 83 132102
[15] Zeng Z Y, Hu C E, Chen X R, Cai L C and Jing F Q 2008 J. Phys.: Condens. Matter 20 425217
[16] Gomi H, Ohta K, Hirose K, Labrosse S, Caracas R, Verstraete M J and Hernlund J W 2013 Physics of the Earth and Planetary Interiors 224 0031
[17] Keeler R N 1971 Physics of High Energy Density 106
[18] Xu J, Zhang P, Haule K, Minar J, Wimmer S, Ebert H and Cohen R E 2018 Phys. Rev. Lett. 121 096601
[19] Zhang Y, Hou M, Liu G, Zhang C, Prakapenka V B, Greenberg E, Fei Y, Cohen R E and Lin J F 2020 Phys. Rev. Lett. 125 078501
[20] Ohta K, Kuwayama Y, Hirose K, Shimizu K and Ohishi Y 2016 Nature 534 95
[21] Pozzo M, Davies C J and Alfè D 2022 Earth and Planetary Science Letters 584 117466
[22] Konôpková Z, McWilliams R S, Gómez-Pérez N and Goncharov A F 2016 Nature 534 99
[23] De Koker N, Steinle-Neumann G and Vlček V 2012 Proc. Natl. Acad. Sci. USA 109 4070
[24] Saha P, Mazumder A and Mukherjee G D 2020 Geoscience Frontiers 11 1755
[25] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Computer Physics Communications 267 108033
[26] Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747
[27] Madsen G K and Singh D J 2006 Computer Physics Communications 175 67
[28] Ma Y, Somayazulu M, Shen G, Mao H K, Shu J and Hemley R J 2004 Physics of the Earth and Planetary Interiors 143-144 455
[29] Mao H K, Wu Y, Chen L C, Shu J F and Jephcoat A P 1990 Journal of Geophysical Research: Solid Earth 95 21737
[30] Glazyrin K, Pourovskii L V, Dubrovinsky L, Narygina O, McCammon C, Hewener B, Schunemann V, Wolny J, Müffler K, Chumakov A I 2013 Phys. Rev. Lett. 110 117206
[31] Yamazaki D, Ito E, Yoshino T, Yoneda A, Guo X, Zhang B, Sun W, Shimojuku A, Tsujino N and Kunimoto T 2012 Geophysical Research Letters 39 L20308
[32] Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840
[33] Bi Y, Tan H and Jing F 2002 J. Phys.: Condens. Matter 14 10849
[34] Brown J M and McQueen R G 1986 Journal of Geophysical Research: Solid Earth 91 7485
[35] Dziewonski A M and Anderson D L 1981 Physics of the Earth and Planetary Interiors 25 297
[36] Price G D, Alfè D, Vočadlo L and Gillan M 2004 The Earth’s Core: An Approach from First Principles
[37] Martorell B, Vočadlo L, Brodholt J and Wood I G 2013 Science 342 466
[38] Pozzo M, Davies C, Gubbins D and Alfè D 2012 Nature 485 355
[39] Gomi H and Hirose K 2015 Physics of the Earth and Planetary Interiors 247 2
[40] Hsieh W P, Deschamps F, Okuchi T and Lin J F 2018 Proc. Natl. Acad. Sci. USA 115 4099
[41] Schatten K and Sofia S 1981 Astrophysical Letters 21 93
[42] Brown J M, Fritz J N and Hixson R S 2000 J. Appl. Phys. 88 5496
[43] Yoo C S, Holmes N C, Ross M, Webb D J and Pike C 1993 Phys. Rev. Lett. 70 3931
[1] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[2] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2(X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[3] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[4] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[5] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[6] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[7] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[8] Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
Kuncan Zheng(郑坤灿), Zhendong Li(李震东), Yutong Cao(曹豫通), Ben Liu(刘犇)), and Junlei Hu(胡君磊). Chin. Phys. B, 2024, 33(6): 064401.
[9] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[10] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[11] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[12] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[13] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[14] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[15] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
No Suggested Reading articles found!