CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Thermal conductivity of iron under the Earth's inner core pressure |
Cui-E Hu(胡翠娥)1, Mu-Xin Jiao(焦亩鑫)1, Xue-Nan Yang(杨学楠)1, Zhao-Yi Zeng(曾召益)1,2,†, and Jun Chen(陈军)2,3,‡ |
1 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China; 2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 3 Center for Applied Physics and Technology, Peking University, Beijing 100071, China |
|
|
Abstract The thermal conductivity of $\varepsilon $-iron at high pressure and high temperature is a key parameter to constrain the dynamics and thermal evolution of the Earth's core. In this work, we use first-principles calculations to study the Hugoniot sound velocity and the thermal transport properties of $\varepsilon $-iron. The total thermal conductivity considering lattice vibration is 200 W/mK at the Earth's inner core conditions. The suppressed anharmonic interactions can significantly enhance the lattice thermal conductivity under high pressure, and the contribution of the lattice thermal conductivity should not be ignored under the Earth's core conditions.
|
Received: 18 April 2024
Revised: 20 June 2024
Accepted manuscript online: 09 July 2024
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
63.20.dk
|
(First-principles theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12072044) and the Natural Science Foundation of Chongqing City (Grant No. cstc2020jcyjmsxmX0616). |
Corresponding Authors:
Zhao-Yi Zeng, Jun Chen
E-mail: zhaoyizeng@cqnu.edu.cn;jun_chen@iapcm.ac.cn
|
Cite this article:
Cui-E Hu(胡翠娥), Mu-Xin Jiao(焦亩鑫), Xue-Nan Yang(杨学楠), Zhao-Yi Zeng(曾召益), and Jun Chen(陈军) Thermal conductivity of iron under the Earth's inner core pressure 2024 Chin. Phys. B 33 106501
|
[1] Hirose K, Labrosse S and Hernlund J 2013 Annual Review of Earth and Planetary Sciences 41 657 [2] Poirier J P 1994 Physics of the Earth and Planetary Interiors 85 319 [3] Huang H, Fan L, Liu X, Xu F, Wu Y, Yang G, Leng C, Wang Q, Weng J and Wang X 2022 Nat. Commun. 13 616 [4] Mao H K, Shu J, Shen G, Hemley R J, Li B and Singh A K 1998 Nature 396 741 [5] Alfè D, Price G D and Gillan M J 2001 Phys. Rev. B 64 045123 [6] Zhang Y, Luo K, Hou M, Driscoll P, Salke N P, Minár J, Prakapenka V B, Greenberg E, Hemley R J and Cohen R E 2022 Proc. Natl. Acad. Sci. USA 119 e2119001119 [7] Zhang Y, Wang Y, Huang Y, Wang J, Liang Z, Hao L, Gao Z, Li J, Wu Q and Zhang H 2023 Proc. Natl. Acad. Sci. USA 120 e2309952120 [8] Nguyen J H and Holmes N C 2004 Nature 427 339 [9] Tateno S, Hirose K, Ohishi Y and Tatsumi Y 2010 Science 330 359 [10] Vočadlo L, Alfè D, Gillan M, Wood I, Brodholt J and Price G D 2003 Nature 424 536 [11] Belonoshko A B, Ahuja R and Johansson B 2003 Nature 424 1032 [12] Belonoshko A B, Lukinov T, Fu J, Zhao J, Davis S and Simak S I 2017 Nature Geoscience 10 312 [13] Niu Z W, Zeng Z Y, Cai L C and Chen X R 2015 Physics of the Earth and Planetary Interiors 248 12 [14] Chen X R, Zeng Z Y, Liu Z L, Cai L C and Jing F Q 2011 Phys. Rev. B 83 132102 [15] Zeng Z Y, Hu C E, Chen X R, Cai L C and Jing F Q 2008 J. Phys.: Condens. Matter 20 425217 [16] Gomi H, Ohta K, Hirose K, Labrosse S, Caracas R, Verstraete M J and Hernlund J W 2013 Physics of the Earth and Planetary Interiors 224 0031 [17] Keeler R N 1971 Physics of High Energy Density 106 [18] Xu J, Zhang P, Haule K, Minar J, Wimmer S, Ebert H and Cohen R E 2018 Phys. Rev. Lett. 121 096601 [19] Zhang Y, Hou M, Liu G, Zhang C, Prakapenka V B, Greenberg E, Fei Y, Cohen R E and Lin J F 2020 Phys. Rev. Lett. 125 078501 [20] Ohta K, Kuwayama Y, Hirose K, Shimizu K and Ohishi Y 2016 Nature 534 95 [21] Pozzo M, Davies C J and Alfè D 2022 Earth and Planetary Science Letters 584 117466 [22] Konôpková Z, McWilliams R S, Gómez-Pérez N and Goncharov A F 2016 Nature 534 99 [23] De Koker N, Steinle-Neumann G and Vlček V 2012 Proc. Natl. Acad. Sci. USA 109 4070 [24] Saha P, Mazumder A and Mukherjee G D 2020 Geoscience Frontiers 11 1755 [25] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Computer Physics Communications 267 108033 [26] Li W, Carrete J, Katcho N A and Mingo N 2014 Computer Physics Communications 185 1747 [27] Madsen G K and Singh D J 2006 Computer Physics Communications 175 67 [28] Ma Y, Somayazulu M, Shen G, Mao H K, Shu J and Hemley R J 2004 Physics of the Earth and Planetary Interiors 143-144 455 [29] Mao H K, Wu Y, Chen L C, Shu J F and Jephcoat A P 1990 Journal of Geophysical Research: Solid Earth 95 21737 [30] Glazyrin K, Pourovskii L V, Dubrovinsky L, Narygina O, McCammon C, Hewener B, Schünemann V, Wolny J, Muffler K, Chumakov A I 2013 Phys. Rev. Lett. 110 117206 [31] Yamazaki D, Ito E, Yoshino T, Yoneda A, Guo X, Zhang B, Sun W, Shimojuku A, Tsujino N and Kunimoto T 2012 Geophysical Research Letters 39 L20308 [32] Boettger J C and Wallace D C 1997 Phys. Rev. B 55 2840 [33] Bi Y, Tan H and Jing F 2002 J. Phys.: Condens. Matter 14 10849 [34] Brown J M and McQueen R G 1986 Journal of Geophysical Research: Solid Earth 91 7485 [35] Dziewonski A M and Anderson D L 1981 Physics of the Earth and Planetary Interiors 25 297 [36] Price G D, Alfè D, Vočadlo L and Gillan M 2004 The Earth’s Core: An Approach from First Principles [37] Martorell B, Vočadlo L, Brodholt J and Wood I G 2013 Science 342 466 [38] Pozzo M, Davies C, Gubbins D and Alfè D 2012 Nature 485 355 [39] Gomi H and Hirose K 2015 Physics of the Earth and Planetary Interiors 247 2 [40] Hsieh W P, Deschamps F, Okuchi T and Lin J F 2018 Proc. Natl. Acad. Sci. USA 115 4099 [41] Schatten K and Sofia S 1981 Astrophysical Letters 21 93 [42] Brown J M, Fritz J N and Hixson R S 2000 J. Appl. Phys. 88 5496 [43] Yoo C S, Holmes N C, Ross M, Webb D J and Pike C 1993 Phys. Rev. Lett. 70 3931 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|