|
|
Robust Tc in element molybdenum up to 160 GPa |
Xinyue Wu(吴新月)1,†, Shumin Guo(郭淑敏)1,†, Jianning Guo(郭鉴宁)1, Su Chen(陈诉)1, Yulong Wang(王煜龙)1, Kexin Zhang(张可欣)1, Chengcheng Zhu(朱程程)1, Chenchen Liu(刘晨晨)1, Xiaoli Huang(黄晓丽)1,‡, Defang Duan(段德芳)1, and Tian Cui(崔田)2 |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity. Although elements with d electrons are usually not favored by conventional BCS, the record superconducting critical temperature (Tc) in element scandium (Sc) has further ignited the intensive attention on transition metals. The element molybdenum (Mo) with a half-full d-orbital is studied in our work, which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity. In this work, we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements, the Tc varies at a rate of 0.013 K/GPa to 8.56 K at 160 GPa. Moreover, the superconductivity is evidenced by the Tc shifting to lower temperature under applied magnetic fields, and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation; the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa. We further investigate the superconducting mechanism of Mo, the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200—400 cm-1.
|
Received: 19 January 2024
Revised: 01 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1405500), the National Natural Science Foundation of China (Grant Nos. 52372257 and 52072188), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT-15R23), and the Zhejiang Provincial Science and Technology Innovation Team (Grant No. 2021R01004). |
Corresponding Authors:
Xiaoli Huang
E-mail: huangxiaoli@jlu.edu.cn
|
Cite this article:
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田) Robust Tc in element molybdenum up to 160 GPa 2024 Chin. Phys. B 33 047406
|
[1] Hamlin J J 2015 Phys. C 514 59 [2] Schilling J S 2007 Phys. C 460——462 182 [3] Falge R L 1967 Phys. Lett. A 24 579 [4] Sekula S T, Kernohan R H and Love G R 1967 Phys. Rev. 155 364 [5] Smith T S and Daunt J G 1952 Phys. Rev. 88 1172 [6] Struzhkin V V, Timofeev Y A, Hemley R J and Mao H K 1997 Phys. Rev. Lett. 79 4262 [7] Smith T F 1970 Phys. Lett. A 33 465 [8] Zhang L, Wang Y, Lv J and Ma Y 2017 Nat. Rev. Mater. 2 17005 [9] Hemley R J 2000 Annu. Rev. Phys. Chem. 51 763 [10] Tse J S, Yao Y and Ma Y 2007 J. Phys.:Condens. Matter 19 425208 [11] Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597 [12] Akahama Y, Kobayashi M and Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843 [13] Chen W, Semenok D V, Troyan I A, Ivanova A G, Huang X, Oganov A R and Cui T 2020 Phys. Rev. B 102 134510 [14] Shirotani I, Kawamura H, Tsuburaya K and Tachikawa K 1987 Jpn. J. Appl. Phys. 26 921 [15] Eremets M I, Struzhkin V V, Mao H K and Hemley R J 2001 Science 293 272 [16] Struzhkin V V, Hemley R J, Mao H K and Timofeev Y A 1997 Nature 390 382 [17] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748 [18] Richardson C F and Ashcroft N W 1997 Phys. Rev. Lett. 78 118 [19] Wigner E and Huntington H B 2004 J. Chem. Phys 3 764 [20] Dias R P and Silvera I F 2017 Science 355 715 [21] Sakata M, Nakamoto Y, Shimizu K, Matsuoka T and Ohishi Y 2011 Phys. Rev. B 83 220512 [22] Yabuuchi T, Matsuoka T, Nakamoto Y and Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703 [23] Skriver H L 1982 Phys. Rev. Lett. 49 1768 [24] Cao Z Y, Jang H, Choi S, Kim J, Kim S, Zhang J B, Sharbirin A S, Kim J and Park T 2023 NPG Asia Mater. 15 5 [25] Hamlin J J, Tissen V G and Schilling J S 2007 Phys. C 451 82 [26] Ishizuka M, Iketani M and Endo S 2000 Phys. Rev. B 61 R3823 [27] Liu X, Jiang P, Wang Y, Li M, Li N, Zhang Q, Wang Y, Li Y L and Yang W 2022 Phys. Rev. B 105 224511 [28] Zhang C, He X, Liu C, Li Z, Lu K, Zhang S, Feng S, Wang X, Peng Y, Long Y, Yu R, Wang L, Prakapenka V, Chariton S, Li Q, Liu H, Chen C and Jin C 2022 Nat. Commun. 13 5411 [29] Wang K, Liu C, Liu G, Yu X, Zhou M, Wang H, Chen C and Ma Y 2023 Proc. Natl. Acad. Sci. USA 120 e2218856120 [30] He X, Zhang C, Li Z, Zhang S, Feng S, Zhao J, Lu K, Min B, Peng Y, Wang X, Song J, Wang L, I. Kawaguchi S, Ji C, Li B, Liu H, Tse J S and Jin C 2023 Chin. Phys. Lett. 40 107403 [31] Ying J, Liu S, Lu Q, Wen X, Gui Z, Zhang Y, Wang X, Sun J and Chen X 2023 Phys. Rev. Lett. 130 256002 [32] Wang K, Sun Y, Zhou M, Liu H, Ma G, Wang H, Liu G and Ma Y 2023 Phys. Rev. Res. 5 043248 [33] Skriver H L 1985 Phys. Rev. B 31 1909 [34] Pettifor D G 1970 J. Phys. C:Solid State Phys. 3 367 [35] Johansson B and Rosengren A 1975 Phys. Rev. B 11 2836 [36] Tse J S, Li Z, Uehara K, Ma Y and Ahuja R 2004 Phys. Rev. B 69 132101 [37] Geballe T H, Matthias B T, Corenzwit E and Hull G W 1962 Phys. Rev. Lett. 8 313 [38] Ruoff A L, Xia H and Xia Q 1992 Rev. Sci. Instrum. 63 4342 [39] Akahama Y, Hirao N, Ohishi Y and Singh A K 2014 J. Appl. Phys. 116 223504 [40] Pei C, Zhang J, Wang Q, Zhao Y, Gao L, Gong C, Tian S, Luo R, Li M, Yang W, Lu Z Y, Lei H, Liu K and Qi Y 2023 Natl. Sci. Rev. 10 nwad034 [41] Khadka B and Adhikari N P 2023 J. Supercond. Novel Magn. 36 1503 [42] Akahama Y and Kawamura H 2006 J. Appl. Phys. 100 043516 [43] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [44] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [45] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [46] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [47] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [48] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [49] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502 [50] Carbotte J P 1990 Rev. Mod. Phys. 62 1027 [51] Ems S C and Swihart J C 1971 Phys. Lett. A 37 255 [52] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 [53] T Baumgartner M E, H W Weber, R Flukiger, C Scheuerlein and L Bottura 2014 Supercond. Sci. Technol. 27 015005 [54] Woollam J A, Somoano R B and O'Connor P 1974 Phys. Rev. Lett. 32 712 [55] Cai S, Zhao J, Ni N, Guo J, Yang R, Wang P, Han J, Long S, Zhou Y, Wu Q, Qiu X, Xiang T, Cava R J and Sun L 2023 Nat. Commun. 14 3116 [56] Dong Q, Li Q, Li S, Shi X, Niu S, Liu S, Liu R, Liu B, Luo X, Si J, Lu W, Hao N, Sun Y and Liu B 2021 npj Quantum Mater. 6 20 [57] Debessai M, Hamlin J J and Schilling J S 2008 Phys. Rev. B 78 064519 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|