Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire |
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影)†, Binghui Ge(葛炳辉), and Dongsheng Song(宋东升)‡ |
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China |
|
|
Abstract The microstructure significantly influences the superconducting properties. Herein, the defect structures and atomic arrangements in high-temperature Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta }$ (Bi-2212) superconducting wire are directly characterized via state-of-the-art scanning transmission electron microscopy. Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor. Inclusion phases with varied numbers of CuO$_{2}$ layers are found, and twist interfaces with different angles are identified. This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.
|
Received: 03 June 2024
Revised: 06 August 2024
Accepted manuscript online: 08 August 2024
|
PACS:
|
61.05.-a
|
(Techniques for structure determination)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
84.71.Mn
|
(Superconducting wires, fibers, and tapes)
|
|
Corresponding Authors:
Ying Liu, Dongsheng Song
E-mail: liuying.hube@outlook.com;dsong@ahu.eud.cn
|
Cite this article:
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升) Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire 2024 Chin. Phys. B 33 096101
|
[1] Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209 [2] Gao Y, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954 [3] Sunshine S A, Siegrist T, Schneemeyer L F, Murphy D W, Cava R J, Batlogg B, van Dover R B, Fleming R M, Glarum S H, Nakahara S, Farrow R, Krajewski J J, Zahurak S M, Waszczak J V, Marshall J H, Marsh P, Rupp L W and Peck W F 1988 Phys. Rev. B 38 893 [4] Zhao J, Gan Y L, Yang G, Zhong Y G, Tang C Y, Yang F Z, Phan G N, Sui Q T, Liu Z, Li G, Qiu X G, Zhang Q H, Shen J, Qian T, Lu L, Yan L, Gu G D and Ding H 2022 Chin. Phys. Lett. 39 077403 [5] Liu W, Zha H, Gu G D, Shen X, Ye M and Qiao S 2023 Chin. Phys. Lett. 40 037402 [6] Hull J R, Wilson M N, Bottura L, Rossi L, Green M A, Iwasa Y, Hahn S, Duchateau J L and Kalsi S S 2015 Applied Superconductivity: Handbook on Devices and Applications pp. 403-602 [7] Luo X, Chen H, Li Y, Gao Q, Yin C, Yan H, Miao T, Luo H, Shu Y, Chen Y, Lin C, Zhang S, Wang Z, Zhang F, Yang F, Peng Q, Liu G, Zhao L, Xu Z, Xiang T and Zhou X J 2023 Nat. Phys. 19 1841 [8] Markiewicz W D, Miller J R, Schwartz J, Trociewitz U P and Weijers H W 2006 IEEE Transactions on Applied Superconductivity 16 1523 [9] David A C and David S G 2002 Handbook of Superconducting Materials (1st Ed.) [10] Hasegawa T, Koizumi T, Aoki Y, Kitaguchi H, Miao H, Kumakura H and Togano K 1999 IEEE Transactions on Applied Superconductivity 9 1884 [11] Okada M, Tanaka K, Wakuda T, Ohata K, Sato J, Kumakura H, Kiyoshi T, Kitaguchi H, Togano K and Wada H 1999 IEEE Transactions on Applied Superconductivity 9 1904 [12] Shen T, Jiang J, Kametani F, Trociewitz U P, Larbalestier D C, Schwartz J and Hellstrom E E 2010 Supercon. Sci. Technol. 23 025009 [13] Feng Y and Larbalestier D C 1994 Interface Sci. 1 401 [14] Li P, Naderi G, Schwartz J and Shen T 2017 Supercon. Sci. Technol. 30 035004 [15] Presland M R, Tallon J L, Buckley R G, Liu R S and Flower N E 1991 Physica C 176 95 [16] Slezak J A, Lee J, Wang M, McElroy K, Fujita K, Andersen B M, Hirschfeld P J, Eisaki H, Uchida S and Davis J C 2008 Proc. Natl. Acad. Sci. USA 105 3203 [17] Johnston S, Vernay F and Devereaux T P 2009 Europhys. Lett. 86 37007 [18] Khaliullin G, Mori M, Tohyama T and Maekawa S 2010 Phys. Rev. Lett. 105 257005 [19] He Y, Nunner T, Hirschfeld P and Cheng H P 2006 Phys. Rev. Lett. 96 197002 [20] Yan H, Gao Q, Song C, Yin C, Chen Y, Zhang F, Yang F, Zhang S, Peng Q, Liu G, Zhao L, Xu Z and Zhou X J 2022 Chin. Phys. B 31 087401 [21] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156 [22] Massee F, Huang Y K and Aprili M 2020 Science 367 68 [23] Maeda H 1996 Bismuth-Based High-Temperature Superconductors [24] Jin S, Tiefel T H, Sherwood R C, Davis M E, van Dover R B, Kammlott G W, Fastnacht R A and Keith H D 1988 Appl. Phys. Lett. 52 2074 [25] Fan W and Zeng Z 2011 Supercon. Sci. Technol. 24 105007 [26] He Y, Graser S, Hirschfeld P J and Cheng H P 2008 Phys. Rev. B 77 220507 [27] Zhiqiang M, Gaojie X, Shuyuan Z, Shun T, Bin L, Mingliang T, Chenggao F, Cunyi X and Yuheng Z 1997 Phys. Rev. B 55 9130 [28] Song D, Zhang X, Lian C, Liu H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L, Yu R, Cheng Z, Song C, Ma X, Duan W, Xue Q and Zhu J 2019 Advanced Functional Materials 29 1903843 [29] Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y and Zhu J 2023 Science 381 227 [30] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [31] Maeda A, Hase M, Tsukada I I, Noda K, Takebayashi S and Uchinokura K 1990 Phys. Rev. B 41 6418 [32] Chakravarty S, Kee H Y and Völker K 2004 Nature 428 53 [33] Yücelen E, Lazić I and Bosch E G T 2018 Sci. Rep. 8 2676 [34] Lin R, Wang Q, Song D, He C, Hu K, Liang Z, Du H, Hao N, Ge B and Wen H H 2023 Adv. Mater. 35 2301021 [35] Htch M J, Snoeck E and Kilaas R 1998 Ultramicroscopy 74 131 [36] Zhao S Y F, Cui X, Volkov P A, Yoo H, Lee S, Gardener J A, Akey A J, Engelke R, Ronen Y, Zhong R, Gu G, Plugge S, Tummuru T, Kim M, Franz M, Pixley J H, Poccia N and Kim P 2023 Science 382 1422 [37] Teresa P, Gutierrez J and Obradors X 2023 Nat. Rev. Phys. 6 132 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|