Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096101    DOI: 10.1088/1674-1056/ad6ccd
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire

Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影)†, Binghui Ge(葛炳辉), and Dongsheng Song(宋东升)‡
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  The microstructure significantly influences the superconducting properties. Herein, the defect structures and atomic arrangements in high-temperature Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta }$ (Bi-2212) superconducting wire are directly characterized via state-of-the-art scanning transmission electron microscopy. Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor. Inclusion phases with varied numbers of CuO$_{2}$ layers are found, and twist interfaces with different angles are identified. This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.
Keywords:  superconductor      microstructure      defect      scanning transmission electron microscopy  
Received:  03 June 2024      Revised:  06 August 2024      Accepted manuscript online:  08 August 2024
PACS:  61.05.-a (Techniques for structure determination)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  84.71.Mn (Superconducting wires, fibers, and tapes)  
Corresponding Authors:  Ying Liu, Dongsheng Song     E-mail:  liuying.hube@outlook.com;dsong@ahu.edu.cn

Cite this article: 

Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升) Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire 2024 Chin. Phys. B 33 096101

[1] Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209
[2] Gao Y, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954
[3] Sunshine S A, Siegrist T, Schneemeyer L F, Murphy D W, Cava R J, Batlogg B, van Dover R B, Fleming R M, Glarum S H, Nakahara S, Farrow R, Krajewski J J, Zahurak S M, Waszczak J V, Marshall J H, Marsh P, Rupp L W and Peck W F 1988 Phys. Rev. B 38 893
[4] Zhao J, Gan Y L, Yang G, Zhong Y G, Tang C Y, Yang F Z, Phan G N, Sui Q T, Liu Z, Li G, Qiu X G, Zhang Q H, Shen J, Qian T, Lu L, Yan L, Gu G D and Ding H 2022 Chin. Phys. Lett. 39 077403
[5] Liu W, Zha H, Gu G D, Shen X, Ye M and Qiao S 2023 Chin. Phys. Lett. 40 037402
[6] Hull J R, Wilson M N, Bottura L, Rossi L, Green M A, Iwasa Y, Hahn S, Duchateau J L and Kalsi S S 2015 Applied Superconductivity: Handbook on Devices and Applications pp. 403-602
[7] Luo X, Chen H, Li Y, Gao Q, Yin C, Yan H, Miao T, Luo H, Shu Y, Chen Y, Lin C, Zhang S, Wang Z, Zhang F, Yang F, Peng Q, Liu G, Zhao L, Xu Z, Xiang T and Zhou X J 2023 Nat. Phys. 19 1841
[8] Markiewicz W D, Miller J R, Schwartz J, Trociewitz U P and Weijers H W 2006 IEEE Transactions on Applied Superconductivity 16 1523
[9] David A C and David S G 2002 Handbook of Superconducting Materials (1st Ed.)
[10] Hasegawa T, Koizumi T, Aoki Y, Kitaguchi H, Miao H, Kumakura H and Togano K 1999 IEEE Transactions on Applied Superconductivity 9 1884
[11] Okada M, Tanaka K, Wakuda T, Ohata K, Sato J, Kumakura H, Kiyoshi T, Kitaguchi H, Togano K and Wada H 1999 IEEE Transactions on Applied Superconductivity 9 1904
[12] Shen T, Jiang J, Kametani F, Trociewitz U P, Larbalestier D C, Schwartz J and Hellstrom E E 2010 Supercon. Sci. Technol. 23 025009
[13] Feng Y and Larbalestier D C 1994 Interface Sci. 1 401
[14] Li P, Naderi G, Schwartz J and Shen T 2017 Supercon. Sci. Technol. 30 035004
[15] Presland M R, Tallon J L, Buckley R G, Liu R S and Flower N E 1991 Physica C 176 95
[16] Slezak J A, Lee J, Wang M, McElroy K, Fujita K, Andersen B M, Hirschfeld P J, Eisaki H, Uchida S and Davis J C 2008 Proc. Natl. Acad. Sci. USA 105 3203
[17] Johnston S, Vernay F and Devereaux T P 2009 Europhys. Lett. 86 37007
[18] Khaliullin G, Mori M, Tohyama T and Maekawa S 2010 Phys. Rev. Lett. 105 257005
[19] He Y, Nunner T, Hirschfeld P and Cheng H P 2006 Phys. Rev. Lett. 96 197002
[20] Yan H, Gao Q, Song C, Yin C, Chen Y, Zhang F, Yang F, Zhang S, Peng Q, Liu G, Zhao L, Xu Z and Zhou X J 2022 Chin. Phys. B 31 087401
[21] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156
[22] Massee F, Huang Y K and Aprili M 2020 Science 367 68
[23] Maeda H 1996 Bismuth-Based High-Temperature Superconductors
[24] Jin S, Tiefel T H, Sherwood R C, Davis M E, van Dover R B, Kammlott G W, Fastnacht R A and Keith H D 1988 Appl. Phys. Lett. 52 2074
[25] Fan W and Zeng Z 2011 Supercon. Sci. Technol. 24 105007
[26] He Y, Graser S, Hirschfeld P J and Cheng H P 2008 Phys. Rev. B 77 220507
[27] Zhiqiang M, Gaojie X, Shuyuan Z, Shun T, Bin L, Mingliang T, Chenggao F, Cunyi X and Yuheng Z 1997 Phys. Rev. B 55 9130
[28] Song D, Zhang X, Lian C, Liu H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L, Yu R, Cheng Z, Song C, Ma X, Duan W, Xue Q and Zhu J 2019 Advanced Functional Materials 29 1903843
[29] Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y and Zhu J 2023 Science 381 227
[30] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[31] Maeda A, Hase M, Tsukada I I, Noda K, Takebayashi S and Uchinokura K 1990 Phys. Rev. B 41 6418
[32] Chakravarty S, Kee H Y and Völker K 2004 Nature 428 53
[33] Yücelen E, Lazić I and Bosch E G T 2018 Sci. Rep. 8 2676
[34] Lin R, Wang Q, Song D, He C, Hu K, Liang Z, Du H, Hao N, Ge B and Wen H H 2023 Adv. Mater. 35 2301021
[35] Htch M J, Snoeck E and Kilaas R 1998 Ultramicroscopy 74 131
[36] Zhao S Y F, Cui X, Volkov P A, Yoo H, Lee S, Gardener J A, Akey A J, Engelke R, Ronen Y, Zhong R, Gu G, Plugge S, Tummuru T, Kim M, Franz M, Pixley J H, Poccia N and Kim P 2023 Science 382 1422
[37] Teresa P, Gutierrez J and Obradors X 2023 Nat. Rev. Phys. 6 132
[1] Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4
Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天). Chin. Phys. B, 2025, 34(7): 076801.
[2] Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077101.
[3] Nontrivial Fermi surface topology in kagome superconductor CsTi3Bi5 revealed by de Haas–van Alphen oscillation
Yuhang Zhang(张宇航), Xinwei Yi(易鑫伟), Zhen Zhao(赵振), Jiali Liu(刘家利), Aini Xu(胥艾妮), Dong Li(李栋), Zouyouwei Lu(鲁邹有为), Yue Liu(刘樾), Jihu Lu(卢佶虎), Hua Zhang(张华), Hui Chen(陈辉), Shiliang Li(李世亮), Ziyi Liu(刘子儀), Jinguang Cheng(程金光), Gang Su(苏刚), Haitao Yang(杨海涛), Xiaoli Dong(董晓莉), Hong-Jun Gao(高鸿钧), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2025, 34(7): 077107.
[4] One-step synthesis of ThMn12-type Sm0.8Zr0.2Fe11SiBx (x=0-0.2) ribbon magnets via rapid solidification
Chi Zhang(张驰), Hui-Dong Qian(千辉东), Wenyun Yang(杨文云), Jingzhi Han(韩景智), Xuegang Chen(陈学刚), Jinbo Yang(杨金波). Chin. Phys. B, 2025, 34(7): 077501.
[5] Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure
Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春). Chin. Phys. B, 2025, 34(6): 067402.
[6] Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride
Guan-Lin Liu(刘冠麟), Ji-Lian Xu(徐辑廉), Peng-Tao Jing(景鹏涛), Jing-Jing Shao(邵京京), Xu Guo(郭旭), Yun-Tao Wu(吴韵涛), Feng Qin(覃凤), Zhen Cheng(程祯), Deming Liu(刘德明), Yang Bao(鲍洋), Hai Xu(徐海), Li-Gong Zhang(张立功), Da Zhan(詹达), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). Chin. Phys. B, 2025, 34(5): 057801.
[7] Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures
Zhi-Bo Sheng(盛智博), Fu-Cong Chen(陈赋聪), Pei-Yu Xiong(熊沛雨), Qi-Ru Yi(易栖如), Jie Yuan(袁洁), Yu Chen(陈雨), Yue-Liang Gu(顾月良), Kui Jin(金魁), Huan-Hua Wang(王焕华), Xiao-Long Li(李晓龙), and Chen Gao(高琛). Chin. Phys. B, 2025, 34(4): 046105.
[8] Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
Wanqiu Yu(于万秋), Yanxiang Sun(孙筵翔), Lihua Liu(刘立华), and Pingli Zhang(张平丽). Chin. Phys. B, 2025, 34(1): 016102.
[9] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[10] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[11] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[12] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[13] Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy
Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发). Chin. Phys. B, 2024, 33(9): 096803.
[14] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[15] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
No Suggested Reading articles found!