Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076201    DOI: 10.1088/1674-1056/ad3b83
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium

Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan zhang(张丽攀)†, Gang Lu(芦刚), and Zhi-Xin Tu(涂志新)
School of Acronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
Abstract  Atomic simulations are executed to investigate the creep responses of nano-polycrystalline (NC) niobium established by using the Voronoi algorithm. The effects of varying temperature, applied stress, and grain size (GS) on creep properties and mechanisms are investigated. Notably, the occurrence of tertiary creep is exclusively observed under conditions where the applied stress exceeds 4.5 GPa and the temperature is higher than 1100 K. This phenomenon can be attributed to the significant acceleration of grain boundary and lattice diffusion, driven by the elevated temperature and stress levels. It is found that the strain rate increases with both temperature and stress increasing. However, an interesting trend is observed in which the strain rate decreases as the grain size increases. The stress and temperature are crucial parameters governing the creep behavior. As these factors intensify, the creep mechanism undergoes a sequential transformation: initially from lattice diffusion under low stress and temperature conditions to a mixed mode combining grain boundaries (GBs) and lattice diffusion at moderate stress and mid temperature levels, and ultimately leading to the failure of power-law controlled creep behavior, inclusive of grain boundary recrystallization under high stress and temperature conditions. This comprehensive analysis provides in more detail an understanding of the intricate creep behavior of nano-polycrystalline niobium and its dependence on various physical parameters.
Keywords:  creep behavior      molecular dynamics simulation      activation energy      stress exponent      nano-polycrystalline niobium  
Received:  12 January 2024      Revised:  30 March 2024      Accepted manuscript online:  07 April 2024
PACS:  62.20.Hg (Creep)  
  87.15.ap (Molecular dynamics simulation)  
  61.82.Rx (Nanocrystalline materials)  
Fund: Project supported by the Doctoral Scientific Research Starting Foundation of Nanchang HangKong University, China (Grant No. EA201903209).
Corresponding Authors:  Li-Pan zhang     E-mail:  yypgoodluck87@163.com

Cite this article: 

Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新) Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium 2024 Chin. Phys. B 33 076201

[1] Ma J C, Lu Y, Qin Y F, et al. 2022 Appl. Acoust. 188 108548
[2] Hachem J, Schuhler T, Orhon D, Cuif-Sjostrand M, Zoughaib A and Moliere M 2022 Energy 238 121656
[3] Xiong B W, Wang C W, Liu K, et al. 2020 Mater. Sci. Eng. A 799 140156
[4] Tang Y and Guo X P 2019 Int. J. Refract. Met. H 84 105015
[5] Su L F, Jia L N, Jiang K Y, et al. 2017 Int. J. Refract. Met. H 69 131
[6] Sun Z P, Guo X P and Guo B H 2015 Int. J. Refract. Met. H 51 243
[7] Wang N, Jia L N, Kong B, et al. 2018 Int. J. Refract. Met. H 71 273
[8] Xiong B W, Wang C W, Xiong Y Z, et al. 2019 Intermetallics 108 66
[9] Buckman R W Jr 2004 Space Tech. Appl. 699 815
[10] Tucker R P, Wechsler M S and Ohr S M 1969 J. Appl. Phys. 40 400
[11] Jóni B, Schafler E, Zehetbauer M, et al. 2013 Acta Mater. 61 632
[12] Singh D and Parashar A 2017 Comp. Mater. Sci. 143 126
[13] Yang X S, Wang Y J, Zhai H R, et al. 2016 J. Mech. Phys. Solids 94 191
[14] Nie K, Wu W P, Zhang X L, et al. 2017 J. Mater. Sci. 52 2180
[15] Bhatia M A, Mathaudhu S N and Solanki K N 2015 Acta Mater. 99 382
[16] Millett P C, Desai T, Yamakov V, et al. 2008 Acta Mater. 56 3688
[17] Meraj M and Pal S 2015 Trans. Indian Inst. Met. 69 277
[18] Yamakov V, Wolf D, Phillpot S R, et al. 2002 Acta Mater. 50 61
[19] Berry J, Rottler J, Sinclair C W, el al. 2014 Phys. Rev. B 92 134103
[20] Kasum K, Mulyana F, Zaenudin M, et al. 2021 Jurnal Fisika Flux Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat 18 67
[21] Van Swygenhoven H and Caro A 1997 Appl. Phys. Lett. 71 1652
[22] Zeng, Y P, Li and X Y 2021 Extreme Mech. Lett. 44 101253
[23] Wu W P, Chen B, Shen H F and Ding Z J 2022 Progress in Natural Sciences: International Materials 32 259
[24] Jiao S Y and Kulkarni Y 2015 Comput. Mater. Sci. 110 254
[25] Wang Y J, Ishii A and Ogata S 2011 Phys. Rev. B 84 224102
[26] Gowthaman S, Jagadeesha T and Dhinakaran V 2022 Silicon 14 11381
[27] Mchenry M E and Laughlin D E 2000 Acta Mater. 48 223
[28] Plimpton S 1995 J. Comput. Phys. 117 1
[29] Hirel P 2015 Comput. Phys. Comm. 197 212
[30] Tadmor E B, Elliott R S, Sethna J P, Miller R E and Bechker C A 2011 JOM 63 17
[31] Stukowski A 2010 Mater. Sci. Eng. 18 015012
[32] Stukowski A 2012 Model. Simul. Mater. Sci. Eng. 20 045021
[33] Pande C S and Cooper K P 2009 Prog. Mater. Sci. 54 689
[34] Yao H, Ye T Z, Yu W S, Wang P F, Wu J M, Wu Y W and Chen P 2021 Materials & Design 206 109766
[35] Mu J W, Sun S C, Jiang Z H, et al. 2013 Chin. Phys. B 22 037303
[36] Coble R L 1963 J. Appl. Phys. 34 1679
[37] Lüthy H, White R A and Sherby O D 1979 Mater. Sci. Eng. 39 211
[38] Weertman J R 1955 J. Appl. Phys. 26 1213
[39] Gowthaman S, Jagadeesha T and Dhinakaran V 2022 Silicon 14 11633
[40] Saha S and Motalab M 2018 Comp. Mater. Sci. 149 360
[41] Aidhy D S, Lu C, Jin K, et al. 2015 Acta Mater. 99 69
[42] Xu X, Binkele P, Verestek W, et al. 2021 Molecules 26 2606
[43] Ding W Y, He H Y and Pan B C 2015 J. Mater. Sci. 50 5684
[44] Keblinski P, Wolf D and Gleiter H 1998 Interface Science 6 205
[1] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[2] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[3] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[4] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[5] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
[6] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[7] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[8] Size effect on transverse free vibrations of ultrafine nanothreads
Zhuoqun Zheng(郑卓群), Han Li(李晗), Zhu Su(宿柱), Nan Ding(丁楠), Xu Xu(徐旭),Haifei Zhan(占海飞), and Lifeng Wang(王立峰). Chin. Phys. B, 2023, 32(9): 096202.
[9] Dislocation mechanism of Ni47Co53 alloy during rapid solidification
Yun-Chun Liu(刘云春), Yong-Chao Liang(梁永超), Qian Chen(陈茜), Li Zhang(张利), Jia-Jun Ma(马家君), Bei Wang(王蓓), Ting-Hong Gao(高廷红), and Quan Xie(谢泉). Chin. Phys. B, 2023, 32(6): 066104.
[10] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[11] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[12] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[13] Unraveling the molecular mechanism of prion disease: Insights from α2 area mutations in human prion protein
Rongri Tan(谈荣日), Kui Xia(夏奎), Damao Xun(寻大毛), Wenjun Zong(宗文军), and Yousheng Yu(余幼胜). Chin. Phys. B, 2023, 32(12): 128703.
[14] Kinesin-microtubule interaction reveals the mechanism of kinesin-1 for discriminating the binding site on microtubule
Yi-Zhao Geng(耿轶钊), Li-Ai Lu(鲁丽爱), Ning Jia(贾宁), Bing-Bing Zhang(张冰冰), and Qing Ji(纪青). Chin. Phys. B, 2023, 32(10): 108701.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!