Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077501    DOI: 10.1088/1674-1056/ad3dcf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)

Xingyu Yang(杨星宇)1,2, Qingqi Zeng(曾庆祺)2,†, Miao He(何苗)1,2, Xitong Xu(许锡童)2, Haifeng Du(杜海峰)1,2,‡, and Zhe Qu(屈哲)1,2,§
1 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
2 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL), HFIPS, CAS, Hefei 230031, China
Abstract  Kagome magnets have attracted considerable research attention due to the interplay between topology, magnetism and electronic correlations. In this study we report single-crystal synthesis of a series of the kagome magnets $R$Cr$_{6}$Ge$_{6}$ ($R={\rm Gd}$-Tm) that possess defect-free Cr kagome lattices and systematically study their magnetic and electrical transport properties. The transition from a canted ferrimagnetic to a paramagnetic state in GdCr$_{6}$Ge$_{6}$, TbCr$_{6}$Ge$_{6}$, DyCr$_{6}$Ge$_{6}$, HoCr$_{6}$Ge$_{6}$, ErCr$_{6}$Ge$_{6}$ and TmCr$_{6}$Ge$_{6}$ occurs at 11.3 K, 10.8 K, 4.3 K, 2.5 K, 3.3 K and below 2 K, respectively, due to $R$-$R$ interactions within the compounds. Magnetization measurements reveal highly anisotropic magnetism with canted magnetic moments in these compounds. In electrical transport, both negative and positive magnetoresistances at different magnetic fields and temperatures have been observed due to the competition between different scattering mechanisms. This work enriches our understanding of the Cr-based kagome magnets and paves the way to search for possible topological responses in this family.
Keywords:  kagome lattice      magnetism      rare earth  
Received:  05 February 2024      Revised:  08 April 2024      Accepted manuscript online:  12 April 2024
PACS:  75.20.En (Metals and alloys)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1600204), the National Natural Science Foundation of China (Grant Nos. U2032213, 12104461, 12374129, 12304156, and 52325105), and Chinese Academy of Sciences (Grant Nos. YSBR-084 and JZHKYPT-2021-08).
Corresponding Authors:  Qingqi Zeng, Haifeng Du, Zhe Qu     E-mail:  qqzeng@hmfl.ac.cn;duhf@hmfl.ac.cn;zhequ@hmfl.ac.cn

Cite this article: 

Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲) Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm) 2024 Chin. Phys. B 33 077501

[1] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635
[2] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647
[3] Xu X T, Yin J X, Qu Z and Jia S 2023 Rep. Prog. Phys. 86 114502
[4] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 18 137
[5] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[6] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[7] Teng X K, Chen L B, Ye F, Rosenberg E, Liu Z Y, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y F, Hashimoto M, Lu D H, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P C 2022 Nature 609 490
[8] Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y and Chen X H 2021 Phys. Rev. X 11 031026
[9] Nie L P, Sun K, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59
[10] Arachchige H W S, Meier W R, Marshall M, Matsuoka T, Xue R, McGuire M A, Hermann R P, Cao H B and Mandrus D 2022 Phys. Rev. Lett. 129 216402
[11] Zhang X X, Hou J, Xia W, Xu Z, Yang P T, Wang A Q, Liu Z Y, Shen J, Zhang H, Dong X L, Uwatoko Y, Sun J P, Wang B S, Guo Y F and Cheng J G 2022 Materials 15 7372
[12] Wu C J, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
[13] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[14] Xu G, Lian B and Zhang S C 2015 Phys. Rev. Lett. 115 186802
[15] Han T H, Helton J S, Chu S Y, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[16] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[17] Tang J, Wu Y D, Kong L Y, Wang W W, Chen Y T, Wang Y H, Soh Y, Xiong Y M, Tian M L and Du H F 2021 Natl. Sci. Rev. 8 nwaa200
[18] Wang W W, Song D S, Wei W S, Nan P F, Zhang S L, Ge B H, Tian M L, Zang J D and Du H F 2022 Nat. Commun. 13 1593
[19] Tang J, Wu Y D, Wang W W, Kong L Y, Lv B Y, Wei W S, Zang J D, Tian M L and Du H F 2021 Nat. Nanotechnol. 16 1086
[20] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S H, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G and Zhang Z Y 2018 Phys. Rev. Lett. 121 096401
[21] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[22] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[23] Morali N, Batabyal R, Nag P K, Liu E K, Xu Q A, Sun Y, Yan B H, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286
[24] Yin J X, Ma W L, Cochran T A, Xu X T, Zhang S T S, Tien H J, Shumiya N, Cheng G M, Jiang K, Lian B, Song Z D, Chang G Q, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H B, Lin H, Neupert T, Wang Z Q, Yao N, Chang T R, Jia S and Hasan M Z 2020 Nature 583 533
[25] Xu X T, Yin J X, Ma W L, Tien H J, Qiang X B, Reddy P V S, Zhou H B, Shen J, Lu H Z, Chang T R, Qu Z and Jia S 2022 Nat. Commun. 13 1197
[26] Gao L L, Shen S W, Wang Q, Shi W J, Zhao Y, Li C H, Cao W Z, Pei C Y, Ge J Y, Li G, Li J, Chen Y L, Yan S C and Qi Y P 2021 Appl. Phys. Lett. 119 092405
[27] Dhakal G, Kabeer F C, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Sakhya A P, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B 104 L161115
[28] Ma W L, Xu X T, Wang Z H, Zhou H B, Marshall M, Qu Z, Xie W W and Jia S 2021 Phys. Rev. B 103 235109
[29] Lv B D, Zhong R, Luo X H, Ma S C, Chen C C, Wang S J, Luo Q, Gao F, Fang C S, Ren W J and Zhong Z C 2023 J. Alloys Comp. 957 170356
[30] Asaba T, Thomas S M, Curtis M, Thompson J D, Bauer E D and Ronning F 2020 Phys. Rev. B 101 174415
[31] Zeng H, Yu G, Luo X H, Chen C C, Fang C S, Ma S C, Mo Z J, Shen J, Yuan M and Zhong Z C 2022 J. Alloy. Comp. 899 163356
[32] Chen D, Le C C, Fu C G, Lin H C, Schnelle W, Sun Y and Felser C 2021 Phys. Rev. B 103 144410
[33] Kabir F, Filippone R, Dhakal G, Lee Y, Poudel N, Casey J, Sakhya A P, Regmi S, Smith R, Manfrinetti P, Ke L Q, Gofryk K, Neupane M and Pathak A K 2022 Phys. Rev. Mater. 6 064404
[34] Wang Q, Neubauer K J, Duan C R, Yin Q W, Fujitsu S, Hosono H, Ye F, Zhang R, Chi S X, Krycka K, Lei H C and Dai P C 2021 Phys. Rev. B 103 014416
[35] Zhang H, Liu C, Zhang Y J, Hou Z P, Fu X W, Zhang X M, Gao X S and Liu J M 2022 Appl. Phys. Lett. 121 202401
[36] Wang B, Yi E K, Li L Y, Qin J W, Hu B F, Shen B and Wang M 2022 Phys. Rev. B 106 125107
[37] Liu C, Zhang H, Li Z F, Yan Y, Zhang Y J, Hou Z P and Fu X W 2023 Surf. Interfaces 39 102866
[38] Roychowdhury S, Ochs A M, Guin S N, Samanta K, Noky J, Shekhar C, Vergniory M G, Goldberger J E and Felser C 2022 Adv. Mater. 34 2201350
[39] Hu Y, Wu X, Yang Y, Gao S, Plumb N C, Schnyder A P, Xie W, Ma J and Shi M 2022 Sci. Adv. 8 eadd2024
[40] He M, Xu X T, Li D, Zeng Q Q, Liu Y L, Zhao H T, Zhou S M, Zhou J H and Qu Z 2024 Phys. Rev. B 109 155117
[41] Konyk M, Romaka L, Stadnyk Y, Romaka V V and Pashkevych V 2021 Phys. Chem. Solid State 22 248
[42] Romaka L, Stadnyk Y, Romaka V V and Konyk M 2022 Phys. Chem. Solid State 23 633
[43] SchobingerPapamantellos P, RodriguezCarvajal J and Buschow K H J 1997 J. Alloys Comp. 255 67
[44] Venturini G, Welter R and Malaman B 1992 J. Alloys Comp. 185 99
[45] SchobingerPapamantellos P, RodriguezCarvajal J and Buschow K H J 1997 J. Alloys Comp. 256 92
[46] Fredrickson D C, Lidin S, Venturini G, Malaman B and Christensen J 2008 J. Am. Chem. Soc. 130 8195
[47] Brabers J, Buschow K H J and Deboer F R 1994 J. Alloys Comp. 205 77
[48] Du Z, Rahman A, Song J P, Zhao J, Liu W, Fan J Y, Ma C L, Ge M, Xiong Y M, Pi L, Zhang L and Zhang Y H 2023 Sci. China-Phys. Mech. Astron. 66 297511
[49] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[1] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[2] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[3] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1−xCo2Sn
Bo-wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[4] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[5] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[6] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[7] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[8] Layered kagome compound Na2Ni3S4 with topological flat band
Junyao Ye(叶君耀), Yihao Lin(林益浩), Haozhe Wang(王浩哲), Zhida Song(宋志达), Ji Feng(冯济), Weiwei Xie(谢韦伟), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057103.
[9] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[10] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[11] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[12] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[13] Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4
Zhi-Lai Yue(岳智来), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Wen-Ka Zhu(朱文卡), Li Pi(皮雳), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(1): 017402.
[14] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[15] Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉),Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
No Suggested Reading articles found!